foxjwill
- 350
- 0
1. Homework Statement
Is the gaussian curvature at a point on the surface
<br /> \frac{1}{(x^2+y^2+1)^2}?
2. Homework Equations
shape operator: <br /> S(\textbf{x})=-D_\textbf{x}\hat{\textbf{n}}=\frac{\partial (n_x, n_y)}{\partial (x,y)}
Gaussian Curvature = <br /> |S(\textbf{x})|
<br /> \hat{\textbf{n}}=\frac{\nabla g}{\|\nabla g\|}
3. The Attempt at a Solution
I basically plugged stuff into the above equations. I'm not sure if they're all correct.
Is the gaussian curvature at a point on the surface
<br /> \frac{1}{(x^2+y^2+1)^2}?
2. Homework Equations
shape operator: <br /> S(\textbf{x})=-D_\textbf{x}\hat{\textbf{n}}=\frac{\partial (n_x, n_y)}{\partial (x,y)}
Gaussian Curvature = <br /> |S(\textbf{x})|
<br /> \hat{\textbf{n}}=\frac{\nabla g}{\|\nabla g\|}
3. The Attempt at a Solution
I basically plugged stuff into the above equations. I'm not sure if they're all correct.