- #1
ghotra
- 53
- 0
I am trying to to the Gaussian integral using contour integration.
What terrible mistake have I made.
[tex]
I = \int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x
[/tex]
I consider the following integral:
[tex]
\int_C \mathrm{e}^{-z^2} \mathrm{d}z
[/tex]
where [itex]C[/itex] is the half-circle (of infinite radius) in the upper-half plane.
There are no singularities in the upper-half plane. So,
[tex]
\int_C \mathrm{e}^{-z^2} \mathrm{d}z = 0
[/tex]
Now, I can break this integral up into two parts.
[tex]
0 = \int_C \mathrm{e}^{-z^2} \mathrm{d}z = \int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x + \int_{\theta=0}^{\theta=\pi} \mathrm{e}^{-z^2} \mathrm{d}z
[/tex]
Or...
[tex]
\int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x &= - \int_{\theta=0}^{\theta=\pi} \mathrm{e}^{-z^2} \mathrm{d}z =
-\lim_{R\rightarrow \infty} \int_{0}^{\pi} \mathrm{e}^{-R^2 \exp(2\mathrm{i}\theta)}\cdot \mathrm{i} R \mathrm{e}^{\mathrm{i}\theta} \mathrm{d}\theta \stackrel{?}{=} \sqrt{\pi}
[/tex]
I know the answer should be [itex]\sqrt{\pi}[/itex]...so the RHS must give this result! But it does not...at least, I have convinced myself that the RHS actually goes to zero. The exponential dominates the linear term, so in the limit as R goes to infinity, the RHS equals zero.
How can this be...it seems I have shown that the gaussian integral is zero.
I should cry.
What terrible mistake have I made.
[tex]
I = \int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x
[/tex]
I consider the following integral:
[tex]
\int_C \mathrm{e}^{-z^2} \mathrm{d}z
[/tex]
where [itex]C[/itex] is the half-circle (of infinite radius) in the upper-half plane.
There are no singularities in the upper-half plane. So,
[tex]
\int_C \mathrm{e}^{-z^2} \mathrm{d}z = 0
[/tex]
Now, I can break this integral up into two parts.
[tex]
0 = \int_C \mathrm{e}^{-z^2} \mathrm{d}z = \int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x + \int_{\theta=0}^{\theta=\pi} \mathrm{e}^{-z^2} \mathrm{d}z
[/tex]
Or...
[tex]
\int_{-\infty}^\infty \mathrm{e}^{-x^2} \mathrm{d}x &= - \int_{\theta=0}^{\theta=\pi} \mathrm{e}^{-z^2} \mathrm{d}z =
-\lim_{R\rightarrow \infty} \int_{0}^{\pi} \mathrm{e}^{-R^2 \exp(2\mathrm{i}\theta)}\cdot \mathrm{i} R \mathrm{e}^{\mathrm{i}\theta} \mathrm{d}\theta \stackrel{?}{=} \sqrt{\pi}
[/tex]
I know the answer should be [itex]\sqrt{\pi}[/itex]...so the RHS must give this result! But it does not...at least, I have convinced myself that the RHS actually goes to zero. The exponential dominates the linear term, so in the limit as R goes to infinity, the RHS equals zero.
How can this be...it seems I have shown that the gaussian integral is zero.
I should cry.