General Relativity, Wald, exercise 4b chapter 2

Unconscious
Messages
77
Reaction score
12
Suppose we have n vector fields ## Y_{\left(1\right)},\ldots,Y_{\left(n\right)} ## such that at every point of the manifold they form a basis for the tangent space at that point .
I have to prove that:

$$\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}-\frac{\partial Y_\nu^{\left(\sigma\right)}}{\partial x^\mu}=C_{\alpha\beta}^\sigma Y_\mu^{\left(\alpha\right)}Y_\nu^{\left(\beta\right)}$$

where ##C_{\alpha\beta}^\gamma ## are the coefficients of the expansion: ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##.



My proof attempt...

From a previous exercise that the book proposes, I was able to demonstrate that the components of the commutator vector field have this form:
##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]^\mu=Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}##.
Putting this together with ##\left[Y_{\left(\alpha\right)},Y_{\left(\beta\right)}\right]=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}##, I can write that:

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial}{\partial x^\mu} ##.

Now, let this operator act on the dual vector ## Y^{\left(\sigma\right)} ## of the dual basis ## Y^{\left(1\right)},\ldots,Y^{\left(n\right)} ##:

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu\frac{\partial\left(Y_\rho^{\left(\sigma\right)}dx^\rho\right)}{\partial x^\mu} ##

## \left(Y_{\left(\alpha\right)}^\nu\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}-Y_{\left(\beta\right)}^\nu\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}\right)Y_\mu^{\left(\sigma\right)}=C_{\alpha\beta}^\gamma Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)} ##

Taking account of:

1) ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\beta\right)}^\mu}{\partial x^\nu}=\frac{\partial\left(Y_\mu^{\left(\sigma\right)}Y_{\left(\beta\right)}^\mu\right)}{\partial x^\nu}-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}=0-Y_{\left(\beta\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu} ##
2) analogously ## Y_\mu^{\left(\sigma\right)}\frac{\partial Y_{\left(\alpha\right)}^\mu}{\partial x^\nu}=-Y_{\left(\alpha\right)}^\mu\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}##
3) ##Y_{\left(\gamma\right)}^\mu Y_\mu^{\left(\sigma\right)}=\delta_\gamma^\sigma ##

we can rewrite the expression as:

##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_{\left(\beta\right)}^\nu-Y_{\left(\alpha\right)}^\nu Y_{\left(\beta\right)}^\mu\right)=C_{\alpha\beta}^\sigma ##.

At this point, I contract on ## \alpha ## and ## \beta## arriving at:

##\frac{\partial Y_\mu^{\left(\sigma\right)}}{\partial x^\nu}\left(Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu Y_\rho^{\left(\beta\right)}-Y_{\left(\alpha\right)}^\nu Y_\gamma^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu Y_\rho^{\left(\beta\right)}\right)=C_{\alpha\beta}^\sigma Y_\gamma^{\left(\alpha\right)}Y_\rho^{\left(\beta\right)} ##

To conclude, I would need to show (for example) that ##Y_{\left(\alpha\right)}^\mu Y_\gamma^{\left(\alpha\right)}=\delta_\gamma^\mu ##, but I can't see how...

From duality I can only deduce this on coordinates:

## Y^{\left(\alpha\right)}Y_{\left(\beta\right)}=\delta_\beta^\alpha ##

## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\nu dx^\mu\frac{\partial}{\partial x^\nu}=\delta_\beta^\alpha##

## Y_\mu^{\left(\alpha\right)}Y_{\left(\beta\right)}^\mu=\delta_\beta^\alpha##

something that I used in the steps above, but it seems to me to be different from what is needed in the last step to conclude.
 
Physics news on Phys.org
Moderator's note: Thread moved to advanced physics homework help.
 
Remember that in something like ##Y_{(\mu)}^{a}##, the ##(\mu)## part labels the particular vector in the basis whereas the ##a## is an index. Note that you have used Greek indices for both the vector-labels and the indices, whereas I will make it especially clear by using Latin indices (a,b,...) for the indices. The defining relation is:

##g_{ab} Y_{(\mu)}^{a} Y_{(\nu)}^{b} = \eta_{(\mu)(\nu)}##

From this, you can derive the following: ##\eta_{(\mu)(\nu)} Y_a^{(\mu)} Y_b^{(\nu)} = g_{ab}##. To show that it's true, contract both sides with ##Y_{(\rho)}^{b}## to obtain

##\eta_{(\mu) (\nu)} Y_a^{(\mu)} Y_b^{(\nu)} Y_{(\rho)}^b = \eta_{(\mu)(\nu)} Y_a^{(\mu)} \delta_{(\rho)}^{(\nu)} = \eta_{(\mu)(\rho)} Y_a^{(\mu)} = (Y_{(\rho)})_a = g_{ab} Y_{(\rho)}^b##

Raising the index ##b## gets you to the equation you want: ##Y_a^{(\mu)} Y_{(\mu)}^b = \delta_a^b##
 
ergospherical said:
The defining relation is:

##g_{ab} Y_{(\mu)}^{a} Y_{(\nu)}^{b} = \eta_{(\mu)(\nu)}##
Sorry for my ignorance... what is ##\eta_{(\mu)(\nu)}##?
 
You can drop those brackets - I just mean the components of the matrix ##\mathrm{diag}(-1,1,1,1)##, with the brackets included for consistency with the left hand side. (It's also probably more common to just drop the brackets everywhere and rely on just Greek/Latin, i.e. ##Y_{\mu}^a##)
 
Ok, clear, thank you :)
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top