In anticipation of the automated courtesy bump, I'll elaborate.
For example, take this scenario from another thread:
we have an association with 10 members, but in this case 5 men and 5 women. The association shall elect a board with 4 members, one chairperson, one vice chairperson, one secretary, and one treasurer. According to the statutes, the chairperson and the vice chairperson must have different sexes, and no person can uphold more than one of these four positions. There are no other restrictions of how the board can be composed
To enumerate the possible boards, suppose we think of column vectors with 3 entires. The entries aren't numbers, they are just symbols. An entry like \begin{pmatrix} x_2\\ M\\C \end{pmatrix}
has the interpretation that x_2 denotes particular individual, the M denotes he is male. The C indicates he is selected as the chairperson.
We try to represent the boards as terms in the symbolic multiplication (vector entry by vector entry):
\big( \begin{pmatrix} x_1 \\ M\\ C \end{pmatrix} + ...+ \begin{pmatrix} x_{10} \\ F \\ C \end{pmatrix} \big)
\big( \begin{pmatrix} x_1 \\ M\\ V \end{pmatrix} + ...+ \begin{pmatrix} x_{10} \\ F \\ V \end{pmatrix} \big)
\big( \begin{pmatrix} x_1 \\ M\\ S \end{pmatrix} + ...+ \begin{pmatrix} x_{10} \\ F \\ S \end{pmatrix} \big)
\big( \begin{pmatrix} x_1 \\ M\\ T \end{pmatrix} + ...+ \begin{pmatrix} x_{10} \\ F \\ T \end{pmatrix} \big)
But this multiplication produces terms that represent illegal selections such as
\begin{pmatrix} x_1 x_5 x_6 x_6 \\ M M F F \\ C V S T\end{pmatrix}
which has the flaws that member x_6 holds two offices and the chairperson (C) and vice chairperson (V) have the same gender.
To rectify this, we could stipulate that the symbols come from some algebraic structure that makes the illegal combinations equal to a kind of zero ( or "unity" or anything that makes them conveniently distinguishable as illegal). For example, we could say that x_i^2 = 0 and
\begin{pmatrix} x_i x_j \\ M^2 \\ CV \end{pmatrix} = \begin{pmatrix} x_i x_j \\ F^2 \\ CV \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
and further any column vector with a 0 entry is equivalent to a column vector of all zeroes.
Rather than such ad hoc stipulations, it would be nice to find a construction using well known mathematical structures where the stipulations are properties of the structures.