Generating electrical power from moisture?

  • Thread starter Thread starter wvt
  • Start date Start date
AI Thread Summary
Recent discussions highlight the emerging technology of moisture-enabled electric generators (MEGs) for generating electrical power from moisture. Key mechanisms involve charge separation and distribution in water drops, influenced by a hygroscopic layer on nanomaterials. Questions arise regarding the specifics of charge interaction with nanomaterials and the significance of drop size. The conversation also touches on related electrokinetic phenomena, such as ion diffusion and triboelectric effects, which could enhance understanding of this energy-harvesting method. Continued exploration and research into these processes are encouraged as interest in alternative energy sources grows.
wvt
Messages
2
Reaction score
0
hello
recently there was a report about generation of electrical power from moisture. Does someone have some details of this process? Would be interessant to try.
Key points: hygroscopic layer on nanomaterial; charge separation; charge distribution in water drops;
 
Engineering news on Phys.org
Thank you for this interesting question. It seems beyond my experience with this emerging energy-harvesting technology called a moisture-enabled electric generator (MEG). This publication seems to cover a diverse range of 3 types of voltaic cells and self-powered sensors. Feel free to ask for more info here with your level of interest.
 
hello, thanks for inviting to further inquiries. honestly, I myself didn't understand the paper in the point, how charge separation exactly works in the special setup. Which kind of charge is carried by the water drops. How do they interact with the walls of the nano material. Does drop size matter?

So a lot of questions. We'll see whether more details will be reported and discussed in the time to come. For me this news is a trigger to occupy bit more with questions of different forms of electro kinetics in general: capillarity, nano generators, triboelectricity - questions that should be pursued with renewed interest within the framework of the debate about new energy resources.
 
I am reading : Ion Diffusion: There is a difference in ion concentration between the moist environment and the solid material, ions will naturally migrate across the material. This migration creates an electrical potential that can be harvested to generate electricity. I suspect the solid must change the pH of the water from 7 acidic or base but then that means degradation to me.
Streaming potential: This could be the triboelectric effects with friction.
Surface charge potential: Chemical reactions? Double Electric Layer effect increases capacitance. High energy 1.5V alkaline to Li Ion cells often have 10 kFarads per cell = These batteries will be far less.
 
Thread 'Weird near-field phenomenon I get in my EM simulation'
I recently made a basic simulation of wire antennas and I am not sure if the near field in my simulation is modeled correctly. One of the things that worry me is the fact that sometimes I see in my simulation "movements" in the near field that seems to be faster than the speed of wave propagation I defined (the speed of light in the simulation). Specifically I see "nodes" of low amplitude in the E field that are quickly "emitted" from the antenna and then slow down as they approach the far...
Hello dear reader, a brief introduction: Some 4 years ago someone started developing health related issues, apparently due to exposure to RF & ELF related frequencies and/or fields (Magnetic). This is currently becoming known as EHS. (Electromagnetic hypersensitivity is a claimed sensitivity to electromagnetic fields, to which adverse symptoms are attributed.) She experiences a deep burning sensation throughout her entire body, leaving her in pain and exhausted after a pulse has occurred...
Back
Top