Geodesics with arbitrary parametrization

  • #1

wrobel

Science Advisor
Insights Author
997
860
Let ##x=(x^1,\ldots,x^m)## be local coordinates in a manifold ##M##; and let ##\{\Gamma^i_{jk}(x)\}## be a connection. Assume that we have a curve ##x=x(t),\quad \dot x\ne 0##. Is this curve geodesic or not?
My guess is that the answer is "yes" iff for all ##k,n## the function ##x(t)## satisfies the following system
$$\dot x^k(\ddot x^n+\Gamma^n_{rj}\dot x^r\dot x^j)=\dot x^n(\ddot x^k+\Gamma^k_{rj}\dot x^r\dot x^j).$$
In my taste this system looks strange. Or not?
 
Last edited:
  • Like
Likes ergospherical

Answers and Replies

  • #2
Let ##x=(x^1,\ldots,x^m)## be local coordinates in a manifold ##M##; and let ##\{\Gamma^i_{jk}(x)\}## be a connection. Assume that we have a curve ##x=x(t),\quad \dot x\ne 0##. Is this curve geodesic or not?
My guess is that the answer is "yes" iff for all ##k,n## the function ##x(t)## satisfies the following system
$$\dot x^k(\ddot x^n+\Gamma^n_{rj}\dot x^r\dot x^j)=\dot x^n(\ddot x^k+\Gamma^k_{rj}\dot x^r\dot x^j).$$
In my taste this system looks strange. Or not?
Well, when it comes to your taste only you can say if it is strange or not. It is not strange of you notice the following: a curve is geodesic if the acceleration is proportional to the velocity i.e. ##a^i=\lambda v^i##. Equivalently (eliminating lambda) you have ##v^ja^i=v^ia^j##, which is your "strange" formula.
 
  • Like
Likes ergospherical, jedishrfu, Orodruin and 1 other person
  • #3
Ok, thanks. I employed the following definition of geodesic: the geodesic is a curve that can be parametrized such that ##x=x(s),##
$$x^i_{ss}+\Gamma^i_{kj} x^k_s x^j_s=0.$$ Here ##\Gamma## is not obliged to be generated by a Riemann metric.
I suspect that your remark about proportionality of the acceleration and the velocity is not an independent fact but follows from this definition by the same argument as I used. Anyway that is good that the formula from #1 does not contradict to your intuition. Thus it must be correct.
 
Last edited:
  • Like
Likes dextercioby
  • #4
Yes, they are equivalent definitions. If you have the proportionality, you can reparametrize to get that the acceleration is zero.
 

Suggested for: Geodesics with arbitrary parametrization

Replies
3
Views
973
Replies
9
Views
1K
Replies
5
Views
1K
Replies
10
Views
2K
Replies
1
Views
888
Replies
2
Views
1K
Replies
23
Views
3K
Replies
4
Views
3K
Replies
19
Views
2K
Replies
4
Views
2K
Back
Top