Geometric Distribution problem

FaradayLaws
Messages
8
Reaction score
0
Question:
If Y has a geometric distribution with success probability .3, what is the largest value, y0, such
that P(Y > y0) ≥ .1?

Attempt:
So i represented the probability of the random variable as a summation

Sum from y0= y0+1 to infinity q^(yo+1)-1 p ≥ .1
using a change of variables i let l = y0+1

p Sum from y0=l to inf (q)^l-1 ≥ .1

from here I'm stuck.. i was thinking of applying the partial sum for the geometric series but I'm not sure how to proceed from here.


Thanks!
 
Physics news on Phys.org
It is easier to work from the other end. Find max y0 such that P(Y < y0) < .9. You will then have a finite sum (geometric series) to work with.
 
oh okay;

once working with the other end =>

summation from y0 =0 to y0-1 of q^y0-1 p < 0.9

with the change of variables l= y0-1

summation from l=0 to l of q^l p < 0.9

now finding the partial sum of the geometric series

p/(1-q) < 0.9
0.3/ 0.3 < 0.9

i'm stuck here ? how do i get the value for y0 ?
 
Your partial sum doesn't look right. It should be a function of y0. It should be something like 1-.3^(y0) < .9. (I am not sure whether it should be y0 or y0+1).
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top