jam_27
- 46
- 0
How can I geometrically interpret this coordinate transformation (from x,y space to \check{x},\check{y} space)?
x = \check{x}cos(β) - \check{y}sin(β)
y = \frac{1}{2}(\check{x}2 -\check{y}2)sin(2β) -\check{x}\check{y}cos (2β)
x = \check{x}cos(β) - \check{y}sin(β)
y = \frac{1}{2}(\check{x}2 -\check{y}2)sin(2β) -\check{x}\check{y}cos (2β)