hmmmmm... ill do one and youll do the other ok?
for |z|<1 youll have
f(z)=\frac{e^z}{z(1-z)}
f(z)=\frac{1}{z}\left(\sum_{n=0}^{\infty}\frac{z^n}{n!}\right)\left(\sum_{n=0}^{\infty}z^n\right)
and using (can you proove this?, i have)
\left(\sum_{n=0}^{\infty}a_{n}z^n\right)\left(\sum_{n=0}^{\infty}b_{n}z^n\right)=\sum_{n=0}^{\infty}c_{n}z^n
where
c_{n}=\sum_{k=0}^{n}a_{k}b_{n-k}
implies that
f(z)=\frac{e^z}{z(1-z)}=\frac{1}{z}\left(\sum_{n=0}^{\infty}\frac{z^n}{n!}\right)\left(\sum_{n=0}^{\infty}z^n\right)=\frac{1}{z}\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n}\frac{1}{k!}\right]z^n
so, around |z|<1 the Laurent expansion will be
\frac{e^z}{z(1-z)}=\frac{1}{z}+\sum_{n=1}^{\infty}\left[\sum_{k=0}^{n}\frac{1}{k!}\right]z^{n-1}=\frac{1}{z}+\sum_{n=0}^{\infty}\left[\sum_{k=0}^{n+1}\frac{1}{k!}\right]z^{n}
there is my part of the deal... now, can you take it from there?
EDIT. I was answering 3 when you posted 4
