schrodingerscat11
- 86
- 1
Dear all,
Greetings! I was given a problem from Reichl's Statistical Physics book. Thank you very much for taking time to read my post.
The stochastic variables X and Y are independent and Gaussian distributed with
first moment <x> = <y> = 0 and standard deviation σx = σy = 1. Find the characteristic function
for the random variable Z = X2+Y2, and compute the moments <z>, <z2> and <z3>. Find the first 3 cumulants.
Characteristic equation: f_z (k) = <e^{ikz}> = \int_{-\infty}^{+\infty} e^{ikz}\, P_z (z) dz
Joint Probability density: P_z(z) = \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty} dy \, δ (z - G(x,y)) P_{x,y}(x,y) where z = G (x, y)
Also, P_{x,y} = P_x (x) \, P_y (y) for independent stochastic variables x and y.
For Gaussian distribution: P_x = \frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}}
To get the characteristic equation, we need first to get the joint probability density Pz(z):
Since G(x,y)= x^2 +y^2 and P_{x,y} = P_x (x) \, P_y (y)
P_z(z) = \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty} dy \, δ (z - x^2 +y^2) P_x (x) P_y (y)
P_z(z) = \int_{-\infty}^{+\infty}P_x (x) \, dx \, \int_{-\infty}^{+\infty}P_y (y) \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-y^2}{2}} \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}(z-x^2)} \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}(x^2+z-x^2)} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}z} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
P_z(z) = \frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}z} \,\int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
Question: How do I simplify this factor \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2) ?
Thank you very much for your help!
Greetings! I was given a problem from Reichl's Statistical Physics book. Thank you very much for taking time to read my post.
Homework Statement
The stochastic variables X and Y are independent and Gaussian distributed with
first moment <x> = <y> = 0 and standard deviation σx = σy = 1. Find the characteristic function
for the random variable Z = X2+Y2, and compute the moments <z>, <z2> and <z3>. Find the first 3 cumulants.
Homework Equations
Characteristic equation: f_z (k) = <e^{ikz}> = \int_{-\infty}^{+\infty} e^{ikz}\, P_z (z) dz
Joint Probability density: P_z(z) = \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty} dy \, δ (z - G(x,y)) P_{x,y}(x,y) where z = G (x, y)
Also, P_{x,y} = P_x (x) \, P_y (y) for independent stochastic variables x and y.
For Gaussian distribution: P_x = \frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}}
The Attempt at a Solution
To get the characteristic equation, we need first to get the joint probability density Pz(z):
Since G(x,y)= x^2 +y^2 and P_{x,y} = P_x (x) \, P_y (y)
P_z(z) = \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty} dy \, δ (z - x^2 +y^2) P_x (x) P_y (y)
P_z(z) = \int_{-\infty}^{+\infty}P_x (x) \, dx \, \int_{-\infty}^{+\infty}P_y (y) \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-y^2}{2}} \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-x^2}{2}} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}(z-x^2)} \, dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}(x^2+z-x^2)} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
P_z(z) = \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}z} \, dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
P_z(z) = \frac{1}{\sqrt{2∏} } e^{\frac{-1}{2}z} \,\int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2)
Question: How do I simplify this factor \int_{-\infty}^{+\infty} dx \, \int_{-\infty}^{+\infty}\frac{1}{\sqrt{2∏} } dy \, δ (z - x^2 +y^2) ?
Thank you very much for your help!
