Jacobpm64
- 235
- 0
Given y = f(x) with f(1) = 4 and f'(1) = 3, find
(a) g'(1) if g(x) = \sqrt {f(x)}
(b) h'(1) if h(x) = f(\sqrt {x})
(a) g'(x) = \frac {1}{2} f(x)^\frac{-1}{2} * f'(x)
g'(1) = \frac {1}{2} f(1)^\frac{-1}{2} * f'(1)
g'(1) = \frac {1}{2}(4)^\frac{-1}{2} * 3
g'(1) = \frac {3}{4}
(b) h'(x) = f'(\sqrt{x})
h'(1) = f'(\sqrt{1})
h'(1) = f'(1)
h'(1) = 3
Are these correct?
I'm not sure if this was the correct approach.
Thanks.
(a) g'(1) if g(x) = \sqrt {f(x)}
(b) h'(1) if h(x) = f(\sqrt {x})
(a) g'(x) = \frac {1}{2} f(x)^\frac{-1}{2} * f'(x)
g'(1) = \frac {1}{2} f(1)^\frac{-1}{2} * f'(1)
g'(1) = \frac {1}{2}(4)^\frac{-1}{2} * 3
g'(1) = \frac {3}{4}
(b) h'(x) = f'(\sqrt{x})
h'(1) = f'(\sqrt{1})
h'(1) = f'(1)
h'(1) = 3
Are these correct?
I'm not sure if this was the correct approach.
Thanks.
Last edited: