Given values, find derivatives

  • Thread starter Thread starter Jacobpm64
  • Start date Start date
  • Tags Tags
    Derivatives
Jacobpm64
Messages
235
Reaction score
0
Given y = f(x) with f(1) = 4 and f'(1) = 3, find

(a) g'(1) if g(x) = \sqrt {f(x)}
(b) h'(1) if h(x) = f(\sqrt {x})

(a) g'(x) = \frac {1}{2} f(x)^\frac{-1}{2} * f'(x)
g'(1) = \frac {1}{2} f(1)^\frac{-1}{2} * f'(1)
g'(1) = \frac {1}{2}(4)^\frac{-1}{2} * 3
g'(1) = \frac {3}{4}

(b) h'(x) = f'(\sqrt{x})
h'(1) = f'(\sqrt{1})
h'(1) = f'(1)
h'(1) = 3

Are these correct?

I'm not sure if this was the correct approach.

Thanks.
 
Last edited:
Physics news on Phys.org
(a) correct(b) If h(x) = f(\sqrt{x}), then h'(x) = f'(\sqrt{x})\frac{1}{2}x^{-\frac{1}{2}}. So it should be \frac{3}{2}
 
Last edited:
thanks, just a simple mistake :redface:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top