Global GR Theorems without Energy Conditions?

PAllen
Science Advisor
Messages
9,318
Reaction score
2,530
It has come up a few times in recent threads here that the energy conditions on the stress-energy tensor (weak, null, dominant, etc) traditionally used to prove global results (e.g. the singularity theorem, the positive energy theorem, geodesic motion theorems*) are problematic: they allow more than they should, yet prohibit physically plausible scenarios as well. It strikes me that the original motivation for these was the sense of 'generality' - the you don't need to assume a theory of matter. However, since this has not panned out so well, I ask:

Does anyone know of attempts to re-prove such theorems on the basis of plausible constraints on the matter Lagrangian (or general forms of the Lagrangian) rather than the traditional energy conditions?



----
*There are papers proving rigorously that if you carefully take the limit as a body shrinks in size and mass, that it must follow a geodesic of the background geometry. Such theorems as I've seen must assume an energy condition as part of the proof. I have also seen a paper that shows that the energy conditions is *necessary*. That is, if you do the limiting process without any constraint on T, not only is non-geodesic motion possible, but even spacelike paths are possible. This is not really surprising given the possible properties of exotic matter.
 
Physics news on Phys.org
I found a paper on this theme:

http://arxiv.org/abs/1012.6038

This specifically addresses the issue of scalar fields which are a thorn in the side of the energy conditions.
 
I think there are some cases where you can't re-prove the theorems because there are known counterexamples. For instance, the nonzero cosmological constant violates some energy conditions, and I think this means that certain inferences made in the past from CMB observations have had to be reanalyzed.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top