MHB Graeme's YAnswers Question: The effect of changing values in sequences?

  • Thread starter Thread starter CaptainBlack
  • Start date Start date
  • Tags Tags
    Sequences
CaptainBlack
Messages
801
Reaction score
0
The effect of changing values in sequences??

I have been given a maths assignment and have been given equations \(u_{n+1}=2u_{n}+2\) and asked what is the effect if the value \(u_{0}\) is changed? I used multiple values both positive and negative and have only noticed taht when it is a high negative number it flips up side down?

.
 
Mathematics news on Phys.org
Look at what happens as you expand the sequence:

\(u_{1} = 2 u_{0}+2\)
\(u_{2} = 2( 2 u_{0}+2 ) + 2 =2^2 u_{0} + 2^2 + 2\)
\(u_{3} = 2( 2^2 u_{0} + 2^2 + 2 ) + 2 = 2^3 u_{0} + 2^3 + 2^2 + 2\)
:
:
\(u_{n} = 2^n u_{0} + 2^n + 2^{n-1} + ... + 2^2 + 2\)

The earlier terms in the sequence above suggest the last one, which can be easily proven by induction.

The last term can now be simplified to:

\(u_{n} = 2^n u_{0} + 2^{n+1} - 2\)

So you now have all the information you need to answer questions about how the sequence depends on \(u_{0}\).
 
An alternative would be generating functions (which I'm quite fond of). (Inlove)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top