Graph uncertainty

  • Thread starter Identity
  • Start date
  • #1
152
0

Main Question or Discussion Point

If you have several data points, each with a small uncertainty in the y-direction, and you want to find the uncertainty in the gradient and the uncertainty in the intercepts of the line of best fit, how would you go about doing that?


*I know with many points you would have to do something with regression, but could the simple, 2-data point case also be explained?

Here's what I'm thinking so far for the 2-data point case, can someone please tell me if i'm right:

Equation of the line, including uncertainties:

[tex]y -(y_0 \pm U(y_0)) = \frac{y_1 \pm U(y_1) - (y_0 \pm U(y_0))}{x_1 - x_0}(x - x_0)[/tex]

So you would eventually get two separate "uncertainty" bits, one in the gradient and the other in the constant term.

[tex]y = (m \pm U(m))x + C \pm U(C)[/tex]

Now do you just let 'y' or 'x' equal 0 and solve?


Thanks so much
 
Last edited:

Answers and Replies

  • #2
140
1
Wouldn't the best fit line for just two data points points, regardless of the uncertainties in the two points' y values, be a line through the two points themselves since their y values would necessarily be centered in the y error range? Therefore, wouldn't the gradient just be the slope of the line through the two points?
 

Related Threads on Graph uncertainty

  • Last Post
Replies
3
Views
10K
Replies
2
Views
2K
  • Last Post
Replies
5
Views
808
  • Last Post
Replies
4
Views
3K
  • Last Post
Replies
3
Views
827
  • Last Post
Replies
10
Views
5K
  • Last Post
Replies
2
Views
4K
  • Last Post
Replies
3
Views
597
  • Last Post
Replies
2
Views
577
  • Last Post
Replies
8
Views
11K
Top