Gravitational force from a square plate

AI Thread Summary
The discussion revolves around calculating the gravitational force from a square plate, comparing it to previous calculations involving spheres, rings, and circular plates. The initial approach suggests treating the plate like a wire, but a participant corrects the mass element expression to reflect the area rather than a linear approximation. The conversation emphasizes using double integrals to account for the gravitational effects across the plate's surface, with specific integrals proposed for evaluation. Participants suggest breaking the square into segments for easier calculations and recommend using software tools for complex integrals. The thread highlights the challenges of applying gravitational concepts to non-symmetrical shapes like a square plate.
Emspak
Messages
240
Reaction score
1
I ordinarily would put this up in a homework/ coursework forum, but this isn't either one, its just something I was curious about given that I am in a Mechanics class.

So, I have done calculations for finding the gravitational force from a sphere and from a ring, and a flat circular plate. All these are symmetrical, tho. I was thinking about what happens with a square plate.

Now, here's the thing. Let's put our particle at a distance z from the surface of the plate. We wil put it in the center, to make the forces as symmetrical as possible.

Kind of intuitively, I would say that the way to do that calculation is to pretend you are dealing with a wire, (kind of like what you do calculating the electrical fields with a square wire). But this is a plate, so it's different (I think).

We have the mass of the plate. At any "radius" b from the center, if the plate is density ρ, with a side of "a" units, the mass is going to be 2b^2ρ. So I thought we could have a dM = 4bρ.

That wold say to me that th eintegral would look like this: \int dF_z = \int_0^a \frac{mG4d\rho dM}{s^2} where s^2 is the distance to that dM, and that will be \sqrt{b^2+z^2} so the integral would end up as: \int dF_z = mG\rho \int_0^a \frac{4b db}{\sqrt{b^2+z^2}}

but anyway, I'd be curios to know if I am approaching this right. I was thinking of the old science fiction tropes with these huge space stations, and wondering what wold happen if one was constructed as a plane square -- also Stephen Baxter -- a scientist himself -- wrote a novel called Raft which takes place in a universe where gravitational forces are a billion times stronger, and a rat of metal plates actually has enough "pull" to live on. (there's more to it than that, but y'all get the idea).
 
Physics news on Phys.org
I'm going to go out on a limb on this one and put out what I got after quickly doing it out on paper. I didn't actually check the integral, so I'm not sure it's 100% right.

You have the wrong expression for ##dm##, it should be ##dm=\rho dA = \rho dx dy##.

I think this problem is easier to work out by not treating it as a bunch of lines.

I think the integral should be $$Gm\rho \int ^{b/2}_{-b/2} \int ^{b/2}_{-b/2} \frac{dxdy}{(x^2+y^2+z^2)} cos\theta= Gm\rho z \int ^{b/2}_{-b/2} \int ^{b/2}_{-b/2} \frac{dxdy}{(x^2+y^2+z^2)^{3/2}} $$

I think this makes sense because $$dF = \frac{Gm\rho dA}{r^2}cos\theta$$

Don't take my word for it though, you should evaluate it and check to see if it makes sense.
 
There are fairly simple expressions for the field and potential of a charged rod, in its midplane. See http://www.lightandmatter.com/area1sn.html , section 10.3.1. I would try breaking up the square into parallel line segments, taking the expression for the potential and integrating it. The integral would probably be ugly, but you could put it into software such as maxima (which is free and open source).
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...

Similar threads

Replies
16
Views
2K
Replies
29
Views
3K
Replies
33
Views
2K
Replies
7
Views
2K
Replies
3
Views
2K
Replies
11
Views
1K
Replies
32
Views
3K
Back
Top