Gravitational potential from QM-like phase

Jonathan Scott
Gold Member
Messages
2,344
Reaction score
1,184
I used to wonder whether one could find a simple physical or geometric model to illustrate how the energy distribution within the universe could give rise to a local gravitational potential of the form sum(m/r), or more generally to a metric whose terms are functions of a similar sum. It recently struck me that there's a very simple model related to the concept of QM phase that naturally gives rise to a local quantity proportional to m/r, as follows:

Suppose that all objects emit spherical scalar complex waves, propagating at c, whose frequency is determined by the object's energy, and which multiply together, so that the phases add. If the frequency of object n is \omega_n and the effective distance to it is r_n, then the overall phase factor relative to the phase at time 0 is as follows:

<br /> \Psi = exp(\Sigma \, i \omega_n(t - r_n/c))<br />

Now consider some of these waves passing an observation point, and compare the phase at that central point with the phase at two points in a straight line on either side of the observation point. As the wave fronts are curved, the phase at the central point is slightly ahead of the phase on either side. The line between the points on either side can be rotated in any direction; if it lies along the line of propagation of the wave, then the average of the phase at those points is equal to the phase at the central observation point, but for any other direction the average is slightly behind. The amount by which the phase on either side lags behind the central phase for a given distance away from the centre is proportional to the frequency of the wave and to the curvature of the wave front (which is inversely proportional to the wave front radius).

Mathematically, this process is equivalent to taking the divergence of the gradient (that is, the Laplacian) of the original phase:

<br /> \nabla^2 (\Sigma \, i \omega_n(t - r_n/c)) = <br /> \Sigma \, \frac{-2 i \omega_n}{r_n c}<br />

This quantity is derived entirely from the distribution of a hypothetical local physical scalar quantity (the "total scalar phase" for all the objects being considered), yet is proportional to the sum of m/r for the relevant objects and can be theoretically extended to include all sources in the universe.

Whether the above formula is just an illustrative toy model or whether it might have some relationship to the underlying physics behind GR is beyond my ability to tell at this point, and any speculation on such questions would presumably be likely to stray outside the scope of this forum. The formula does obviously hypothesize concepts which don't form any official part of GR, in that for example if this "total scalar phase" were physically real, it would mean that the effective total energy of the universe would have a well-defined local value as seen at any point (it would simply be the time derivative of the total scalar phase).

If this is a known model, I'd be very interested to hear more about it. A similar model also works for the electromagnetic potential (but in that case instead of a phase we have something like a rotation which can be in either sense).
 
Physics news on Phys.org
Hi Jonathan,

Your post does go beyond the scope of this forum. In fact, the Physics Forums posting guidelines,

https://www.physicsforums.com/showthread.php?t=5374,

state
One of the main goals of PF is to help students learn the current status of physics as practiced by the scientific community; accordingly, Physicsforums.com strives to maintain high standards of academic integrity. There are many open questions in physics, and we welcome discussion on those subjects provided the discussion remains intellectually sound. It is against our Posting Guidelines to discuss, in most of the PF forums, new or non-mainstream theories or ideas that have not been published in professional peer-reviewed journals or are not part of current professional mainstream scientific discussion. Posts deleted under this rule will be accompanied by a private message from a Staff member, and, if appropriate, an invitation to resubmit the post in accordance with our Independent Research Guidelines.

The Independent Research Guidelines are here:

https://www.physicsforums.com/showthread.php?t=82301.
 
I don't think I'm offering any new theory here, or anything which might need reviewing, assuming I haven't made any silly mistake with the trivial math.

I think that relativistic potential theory, both in electromagnetism and gravity, raises questions about how the "action at a distance" model, in terms of source strength divided by distance, relates to the "field" model, in terms of local potential and the metric. This trivial model based on an QM-like wave analogy primarily offers an illustrative and easily visualized example of a mechanism which by which such a relationship could operate, and I thought I'd made that clear.

At least it's more realistic than the "rubber sheet" analogies typically used to explain GR to beginners.

(As I said before, perhaps there is also some way this idea might relate to the actual physics, but if so I don't know what it is, so unless this is already a known approach, I'm sure that aspect is outside the scope of this forum).
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top