Rindler coordinates (
https://en.wikipedia.org/wiki/Rindler_coordinates) describes uniformly accelerating frames of reference.
We are considering an acceleration of g.
Let c=1, g=1
Note that choosing g=1 is choosing a time unit. For g=10m/s^2, since we have set c=1, we need to write g in terms of c:
g=3.3*10^-8 c/second
So, the time unit is (1/(3.3*10^-8/second) = 29979245.8 seconds
Consider the world-line of the asteroid. Let's assume no forces on the asteroid, so the world line is a diagonal line in inertial coordinates. Choose the line so it crosses the X axis at (1,0). So, the asteroid will be moving at v when it passes right by the Rindler observer who is stationed at (1,0). This Rindler observer is uniformly accelerating at g, so is stationary with respect to the massive body. Lowercase letters refer to the Rindler observers' coordinates, and uppercase refer to inertial coordinates (which are accelerating with respect to the massive body).
So, we want to know, where does the t=(1 second) curve intersect the world-line of the asteroid? Converting units: t=3.3*10^-8
Let's write the equation of the world-line
X = v*T + 1
Now, for coordinate transformation
x=sqrt(X^2-T^2)
t=arctanh(T/X)
T = tanh(t)
plugging in and solving for the world-line in x and t coordinates
X = v*tanh(t) + 1
x = sqrt((v*tanh(t) + 1)^2 - (tanh(t))^2)
Now, we want to know the new instantaneous velocity seen by the Rindler observer at t=3.3*10^-8
v_new = dx/dt = d(sqrt((v*tanh(t) + 1)^2 - (tanh(t))^2))/dt
(using mathematica)
= (Sech[t]^2 (v + (-1 + v^2) Tanh[t]))/Sqrt[-Tanh[t]^2 + (1 + v Tanh[t])^2]
Now just plug in values (t=3.3*10^-8, v=sqrt(3)/2)
v_new = sqrt(3)/2 - 3.3*10^-8
Whoops, we're accelerating in the wrong direction. Oh well, just reverse the sign of v.
Now just plug in values (t=3.3*10^-8, v=-sqrt(3)/2)
v_new = -sqrt(3)/2 - 3.3*10^-8
Now since we are using units where c=1, 3.3*10^-8 = 9.9 m/s^2.
So, basically, by accelerating at 10m/s^2 for 1 second, we have changed v by about 9.9 m/s^2. There might be some rounding error.
What if we accelerate longer, or set g to a larger value? Let's say, set g to c/10 per second.
Then, t = 0.1
with v = -0.8660254
v_new = -0.971218
If g=0.5c, we get v_new = -2.01887
That's faster than c. It's impossible to go faster than c in inertial coordinates, but it might be possible in Rindler coordinates. Keep in mind that the asteroid is very far from the observer after 1 second. Accelerating frames are weird. But maybe I just made a mistake. I haven't done this kind of calculation before.