GRE Math Problem #57: Subring of R[x] From Real Numbers

  • Thread starter Thread starter jammidactyl
  • Start date Start date
jammidactyl
Messages
33
Reaction score
1
I'm reviewing the practice booklet for the GRE and came across a question I can't solve. Problem #57 for reference.

http://www.ets.org/Media/Tests/GRE/pdf/Math.pdf

Let R be the field of real numbers and R[x] the ring of polynomials in x with coefficients in R. Which of the following subsets of R[x] is a subring of R[x]?

I. All polynomials whose coefficient of x is zero.
II. All polynomials whose degree is an even integer, together with the zero polynomial.
III. All polynomials whose coefficients are rational numbers.

I figured the answer was "all of the above", but the answer in the back says just I and III.

If you add or subtract two polynomials of even degree, you get another polynomial of even degree or the zero polynomial. If you multiply two polynomials of even degree, the answer also is a polynomial of even degree. Since it's a subset and satisfies these conditions, isn't II a subring?

I think I'm making a really simple mistake with some obvious counterexample.
 
Last edited by a moderator:
Physics news on Phys.org
Does II have a multiplicative identity?
 
It only needs an additive identity to be a subring, which it has.
 
Apparently it depends on which definition of the term "ring" you're used to! This is good information to know for the test... never realized there was such a difference.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top