Say you have [tex]exp{(\omega)}[/tex] and [tex]\omega[/tex] has a simple pole show that(adsbygoogle = window.adsbygoogle || []).push({});

[tex]exp{(\omega)}=exp{(F+)}z^{-1}exp{(F-)}[/tex] where F+ is holomorphic and F- is antiholomorphic. My basic thought is if [tex]\omega[/tex] has a simple pole then [tex]\omega z[/tex] is holomorphic and on the punctured disk it can be represented by a Laurant series. The problem is that I'm missing a factor of log on z.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Grothendieck decompostion simple example

**Physics Forums | Science Articles, Homework Help, Discussion**