Not anonymous
- 143
- 58
fresh_42 said:11. Let ##a < b < c < d## be real numbers. Sort ##x = ab + cd, y = bc + ad, z = ac + bd## and prove it.
The sorted order is ##y < z < x##, which is proved as follows by first proving 2 pairwise inequalities.
$$
y - z = (bc + ad) - (ac + bd) = c(b-a) + d(a-b) = (c-d)(b-a) < 0
\Rightarrow (y - z) < 0 \Rightarrow y < z
$$
where ##(c-d)(b-a) < 0## follows from the fact that ##c < d## and ##b > a## as per the given conditions.
$$
x - z = (ab + cd) - (ac + bd) = a(b-c) + d(c-b) = (d-a)(c-b) > 0
\Rightarrow (x - z) > 0 \Rightarrow x > z
$$
where ##(d-a)(c-b) > 0## follows from the fact that ##d > a## and ##c > b## as per the given conditions.
Combining the 2 inequalities gives the ordering inequality ##x > z > y##.
$$
y - z = (bc + ad) - (ac + bd) = c(b-a) + d(a-b) = (c-d)(b-a) < 0
\Rightarrow (y - z) < 0 \Rightarrow y < z
$$
where ##(c-d)(b-a) < 0## follows from the fact that ##c < d## and ##b > a## as per the given conditions.
$$
x - z = (ab + cd) - (ac + bd) = a(b-c) + d(c-b) = (d-a)(c-b) > 0
\Rightarrow (x - z) > 0 \Rightarrow x > z
$$
where ##(d-a)(c-b) > 0## follows from the fact that ##d > a## and ##c > b## as per the given conditions.
Combining the 2 inequalities gives the ordering inequality ##x > z > y##.