Group: most general scalar potential out of 2 doublet irreps of S3.

salparadise
Messages
22
Reaction score
0
Group Theory: Most general scalar potential out of 2 doublet irreps of S3.

I'm taking a course on group theory in physics, but the teacher is really bad at making the bridge between the maths and the physics.

As homework I have to do the exercise below. I think I know how to do it but I'm also posting it to see if someone could please recommend a good reference book where this kind of questions are treated. A reference that clearly explains Young diagrams (not just Young tableau) is also something I can't find. I've consulted the following books: Georgi.H and Cornwell.

Homework Statement


Symmetry group S3. Taking into account the direct product of the 2D irreps as follows:
\psi_{i}\otimes\psi^{}_{j} = \Psi_{1}+\Psi_{1}+\Psi_{2}
where:
\Psi_{1} = \psi_1\psi^{'}_1 + \psi_2\psi^{'}_2\\

\Psi_{1'} = \psi_1\psi^{'}_2 + \psi_2\psi^{'}_1\\

\Psi_{2} = (\psi_1\psi^{'}_2 + \psi_2\psi^{'}_1 , \psi_1\psi^{'}_1 - \psi_2\psi^{'}_2 )^T\\

Write the most general scalar potential up to power four, made exclusivly with
two S3 doublets, namely \psi and \chi.


The Attempt at a Solution


Knowing that the product of the 2D irreps of S3 is 2⊗2=1+1'+2, and knowing that a scalar invariant potential can only be formed by spaces of trivial representation. We only need to form all possible products of \psi and \chi up to power 4 and at the end only take the resulting 1 irrep (trivial one) terms.

Thanks in advance

PS - If this should be in another forum section, please let me know.
 
Last edited:
Physics news on Phys.org
Hi,

I noticed there's an error on my post. on the 1' irrep as direct product of the 2D irreps there should be minus sign.

Anybody can help with this question?

Thanks
 
Hello,

Anybody could please help?

Thanks
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top