Group S3: Irreducible vs Reducible Representation

  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Representation
LagrangeEuler
Messages
711
Reaction score
22

Homework Statement


##e = \begin{bmatrix}
1 & 0 \\[0.3em]
0 & 1 \\[0.3em]

\end{bmatrix}##,
##a =\frac{1}{2} \begin{bmatrix}
1 & -\sqrt{3} \\[0.3em]
-\sqrt{3} & -1 \\[0.3em]

\end{bmatrix}##.
##b =\frac{1}{2} \begin{bmatrix}
1 & \sqrt{3} \\[0.3em]
\sqrt{3} & -1 \\[0.3em]

\end{bmatrix}##
##c= \begin{bmatrix}
-1 & 0 \\[0.3em]
0 & 1 \\[0.3em]

\end{bmatrix}##
##d=\frac{1}{2} \begin{bmatrix}
-1 & \sqrt{3} \\[0.3em]
-\sqrt{3} & -1 \\[0.3em]

\end{bmatrix}##
##f=\frac{1}{2} \begin{bmatrix}
-1 & -\sqrt{3} \\[0.3em]
\sqrt{3} & -1 \\[0.3em]

\end{bmatrix}##
This is irreducible representation of group ##S_3##. \\
Reducible representation of ##S_3## is
##e=d=f = \begin{bmatrix}
1 & 0 \\[0.3em]
0 & 1 \\[0.3em]

\end{bmatrix}##
##a =b=c=\frac{1}{2} \begin{bmatrix}
-1 & -\sqrt{3} \\[0.3em]
-\sqrt{3} & 1 \\[0.3em]

\end{bmatrix}##
Why is better to use irreducible then reducible representation in this case and in general?
 
Physics news on Phys.org
What do you mean by "better to use?" You haven't used any representations to do anything.
 
In practice one always take some irreducible representation to work with. My question is why?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top