Does Group Cardinality Determine Element Order?

RJLiberator
Gold Member
Messages
1,094
Reaction score
63

Homework Statement


If G is a group with n elements and g ∈ G, show that g^n = e, where e is the identity element.

Homework Equations

The Attempt at a Solution



I feel like there is missing information, but that cannot be.
This seems too simple:
The order of G is the smallest possible integer n such that g^n = e. If no such n exists, then G is of infinite order.

From this definition of order can we simply state that since G is a group with 'n' elements then there must exist an n such that g^n = e ?

order is denoted as °(g)
So
°(g) = n ==> g^n = e.
 
Physics news on Phys.org
RJLiberator said:

Homework Statement


If G is a group with n elements and g ∈ G, show that g^n = e, where e is the identity element.

Homework Equations

The Attempt at a Solution



I feel like there is missing information, but that cannot be.
This seems too simple:
The order of G is the smallest possible integer n such that g^n = e. If no such n exists, then G is of infinite order.
Aren't you mixing up G and g here? You're describing the definition of the order of the element g, not the order of the group G.

From this definition of order can we simply state that since G is a group with 'n' elements then there must exist an n such that g^n = e ?

order is denoted as °(g)
So
°(g) = n ==> g^n = e.
 
  • Like
Likes RJLiberator
Where did you get this: "The order of G is the smallest possible integer n such that g^n = e"? The definition of "order of a group" is simply the number of elements in the group (the cardinality of the underlying set). It looks to me like you are being asked to prove the statement you give.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top