Guide to learning mathematical physics

AI Thread Summary
The discussion revolves around the challenges of transitioning from algebraic geometry to mathematical physics for a graduate student. Key points include the need for a solid understanding of foundational physics topics such as quantum mechanics, quantum field theory, and general relativity, along with essential mathematical tools like differential geometry and functional analysis. Participants emphasize the importance of structured learning and guidance from experienced researchers to navigate the diverse fields within mathematical physics. There is also a recognition that mathematical physicists often focus on specific subfields, applying mathematics to physical theories, and that mastering both disciplines requires significant dedication. Ultimately, the conversation highlights the complexity of preparing for research-level work in mathematical physics and the necessity of balancing depth in both mathematics and physics.
Grassman1
Messages
12
Reaction score
0
Currently, I am a graduate student specializing in algebraic geometry. On the other hand, I have also become extremely interested in the mathematical physics. However, I am not sure what steps I should take to get to the modern frontiers of mathematical physics research. My mathematical knowledge covers basic graduate analysis, algebra and topology with an emphasis in algebraic geometry, and as for physics, I know up to basic quantum field theory at the level of P&S and basic general relativity at the level of Wald.

However, unlike those fields that I have studied so far, I am not sure what to learn in order to learn the basics to get to the research level, i.e., able to fully comprehend and dissect research papers in the mathematical physics journals. Most mathematical physics books that I have seen so far are only mathematical methods used in physics. To re-emphasize, I don't simply want references of mathematics used in physics, I wish to know the fundamentals that mathematical physics have to master and concrete examples of modern topics in the field. However, if it is essential, I would like to know what the main relevant mathematical topics are.

Thus, for my main question: What specific books/papers should I start reading to understand the fundamentals of mathematical physics at this point and in what order should I read/study them?

As for side questions: I do not really understand the basic knowledge that a mathematical physicist should have. Do they specialize in a particular area of mathematics or is it mostly topology and geometry or must they know other applicable areas such as functional analysis as well and to what depth?
Would me continuing to self-study algebraic geometry be compatible with learning mathematical physics at the same time? What main fields are there now and what advanced books/papers could I read regarding them after learning the fundamentals as addressed in my previous question? What are the most relevant mathematical topics? Off the top of my head, I can think of mostly functional analysis and topology and geometry.

Thanks!
 
Last edited:
Physics news on Phys.org
I don't think there's such thing as 'I want to learn mathematical physics', because mathematical physics is not really a particular topic. What you can learn, however, is physics with a mathematical taste. :)
 
Oh alright. How would one approach learning the prerequisites to understand research papers, and the modern research areas in mathematical physics? On that note, what are the main modern research areas?
 
It's quite difficult to try to reach research level, if not quided by a researcher himself. I mean, to reach a profound level in a subject, you first need to learn the 'basics': QM, QFT, GR and then, according to the research group's interests, the niche where you'd get to work in a short time.

Example: Solidly knowing QFT and GR at an advanced level (say Weinberg for standard QFT and Wald for GR) would get you on the proper path for quantum gravity which is most well known to be done under 'loop quantum gravity'.

As for the mathematical background, there's never too much, but there's always too little: differential geometry however is a must (and I'd say algebraic topology and functional analysis).
 
Last edited:
Thanks-you. Do you know specifically what kinds of fields there are? So what should I start off learning first and are there any specific good references/books that you would recommend? As for QFT, should I learn all the variants of it such as conformal field theory, topological qft, etc.
It just seems so much more unclear as to what to prepare for in terms of doing mathematical physics. For example, to learn any other field thoroughly such as algebraic geometry, one would just search for relevant books and read them in order, occasionally picking up other books as references or to do more problems. But for this, I'm not even sure what to start with, besides just doing different kinds of math.
I suppose one of the main things I'm confused about is, before one does any actual research, what exactly is the difference between the training/preparation for a mathematical physicist and a pure mathematician? It seems that mathematical physicists basically just learns mathematics, except it's not focused in a particular field and has some physical applications.Do mathematical physicists often get insights behind the way a physicist thinks about problems as well?
 
Last edited:
Grassman1 said:
Thanks-you. Do you know specifically what kinds of fields there are? [...]

There are so many fields in theoretical physics, I don't know where to start.

Grassman1 said:
[...] So what should I start off learning first and are there any specific good references/books that you would recommend?[...]

The theoretical physicist's carrer 'must' path is at a minimum level:
Lagrange+Hamilton+H-J mechanics > electrodynamics + special relativity > quantum mechanics > quantum field theory > general relativity.

Grassman1 said:
[...] As for QFT, should I learn all the variants of it such as conformal field theory, topological qft, etc. [...]

These are already specialized topics, even active in the field of research. QFT is typically done as: standard QFT (at the level of Weinberg vol.1+2), then axiomatical QFT at the level of Bogolubov, Logunov, Todoriv (1975) supplmented by Haag (1992) for the algebraic approach.

Only then you can tackle CFT or TQFT or SUSY-QFT.

Grassman1 said:
[...] It just seems so much more unclear as to what to prepare for in terms of doing mathematical physics. [...]

Prepare to apply pure mathematics to the study of nature.

Grassman1 said:
[...] For example, to learn any other field thoroughly such as algebraic geometry, one would just search for relevant books and read them in order, occasionally picking up other books as references or to do more problems. But for this, I'm not even sure what to start with, besides just doing different kinds of math.[...]

Physics is learned in the minimal path I mentioned above in bolded characters. Physics is learned from textbooks and lectures by teachers (usually professional physicists, already involved in research). For each theory of physics there are books on the subject which vary in difficulty from introductory to hardcore.

Grassman1 said:
[...]I suppose one of the main things I'm confused about is, before one does any actual research, what exactly is the difference between the training/preparation for a mathematical physicist and a pure mathematician? It seems that mathematical physicists basically just learns mathematics, except it's not focused in a particular field and has some physical applications.Do mathematical physicists often get insights behind the way a physicist thinks about problems as well?

First I'd argue that a mathematician's insights are always welcome in the field of physics. And their rigor in terms of not letting statements unproven. Ever since GW Leibniz, mathematicians are welcome to write (about) physics.
When a mathematical physicist, you're already focused on a particular subtheory of physics and to that end you should master all mathematical tools which have a relevance for that topic. For example, a relativist should master differential geometry and its prereqs: linear algebra, real and complex calculus, set theory and point set topology. He's not truly expected to know very well the mathematical methods of quantum field theory, like functional analysis, probability theory.
 
  • Like
Likes Astronuc
Thanks for the detailed response. So basically, a mathematical physicist chooses a particular subfield of theoretical physics and applies pure mathematics to it? It appears that quantum gravity appears to be the most active field for this right now. In such a way of characterizing it though, it seems like mathematical physics is more physics than mathematics since from your description, it doesn't seem like mathematical physicists would do as much research into the pure math in their field, however, I have heard many say that mathematical physics is basically just mathematics since there is a clear distinction between a theoretical physicist and a mathematical physicist.

It seems that qft in general, and all those variants of qft are the most active right now, so for now, would it be a good idea to read over a book like Nakahara and learn the topics I haven't learned yet, and then focus on those parts of qft, as well as mastering the relevant mathematics? Regarding learning the mathematics, how in-depth should I go about it? For instance, I learned category theory from Awodey's book, but I'm not sure if I have to go even more in-depth and start reading research papers regarding the mathematical topics I learn about.

And also, having taken the physics classes that you mentioned as an undergraduate (I was a physics major too, should I start reading the relevant mathematical physics papers after learning enough of the mathematics? As for preparation, I was referring to, for example, what to self-study to get ahead in terms of training and getting a head-start into the field.

One more thing that confuses me about this in general, is really the depth in mathematics that one should go into (I mean, it shouldn't be as little as a regular theoretical physicist, but probably should be as in-depth as a mathematician specializing in that field), as well as the depth in the physics that one should go into for the same reasoning as above. Are there dedicated mathematical physics topics/books to learn from that is a balance of the two extremities?

As for my previous question regarding how one should learn mathematical physics, I suppose I was mistaken. You gave a response regarding learning physics, but I was addressing mathematical physics in particular, which I can't really find dedicated books aside from mathematical methods. Would books like qft from a mathematical perspective be of this type?

And finally (sorry for the long list of questions but I've been wondering about this for some time), is it commonplace for a mathematical physicist to also specialize in either a field in mathematics or physics besides mathematical physics? What I really wanted to do was work at the boundaries of mathematics and physics and it seemed like mathematical physics was the only place where I could do that, and moreover I see that the only places where the two fields coincide most obviously are in dedicated departments of topology and theoretical physics.

Thanks!
 
Last edited:
So many new questions, but too little to add from myself. It is an ambitous task/goal you've set up for yourself. Just remember that research *as teaching* one doesn't do by himself. Guidance is the most important factor in reaching knowledge goals.
I hope someone else (working in the domain, really) can bring new. fresh insights into your desired answers.
 
This will tell you everything you need to know, at least if you want to study the things Baez used to:

http://math.ucr.edu/home/baez/

All the stuff you need is under This Week's Finds, fun stuff, and seminar.

Here's a general overview:
http://math.ucr.edu/home/baez/books.html

Personally, I found out that it was way too hard to get really deeply into both math and physics. This is not just me. A string theorist told Atiyah he wanted to learn algebraic geometry and Atiyah said, "You can't."

And he didn't mean him personally. It's just that algebraic geometry is a full time job to keep up with, as is string theory.

Things like this are part of what lead me to quit math and physics for good, as far as coming up with any new results is concerned. I suffer from wanting to understand things very thoroughly, though, which makes me too slow. People who are less particular about that are capable of going further than I did. Look at Baez and how far he got, for example. My goal now is only to try to clear the way for more people like me, so that they can understand things more thoroughly and still learn fast enough to succeed where I failed.
 
  • #10
Thanks! There are a lot of useful things on the site. However, is there a particular reason he didn't mention any algebraic geometry texts in his books page? I heard that mathematical string theorists need to know a lot of k-theory and noncommutative geometry.
So I guess if people do mathematical physics, then that's basically the only thing they specialize in?
What exactly differentiates string theorists from people like Baez or mathematical physicists in general? Is it just the fact that mathematical physicists have to know a lot more pure math, but not necessarily specialize in those areas of pure mathematics?
 
  • #11
However, is there a particular reason he didn't mention any algebraic geometry texts in his books page?

Not really what he knows.

I heard that mathematical string theorists need to know a lot of k-theory and noncommutative geometry.

Apparently, yes.

So I guess if people do mathematical physics, then that's basically the only thing they specialize in?

No, mathematical physics could mean a lot of things.

What exactly differentiates string theorists from people like Baez or mathematical physicists in general?

Baez was in the loop quantum gravity camp, so slightly different math there. Also, he was a bit more of a mathematician, but still one of the few mathematicians who is that deep into physics.

Is it just the fact that mathematical physicists have to know a lot more pure math, but not necessarily specialize in those areas of pure mathematics?

Maybe. Mathematicians who nominally work on string theory can be so far from the physics that they don't really even know what the actual string theorists are talking about. There are only a few people out there who really know both physics and math, Ed Witten being the canonical example.
 
  • #12
Congratulations on entering grad school,
In my opinion, a mathematical physicist should have all the basic knowledge in math and physics. I recommend learning them if you do not have one and do not underestimate the importance of them.
For university math knowledge, group theory and complex manifolds may be the most important in the field of mathematical physicist.
Also, I think that special and general relativity can come before quantum mechanics.
 
  • #13
Oh alright, so basically, I need to know both the general pure mathematics and theoretical physics to contribute to research in mathematical physics. So what exactly, do mathematical physicists specialize in if they don't really specialize any subfield of either pure mathematics or theoretical physics?
I find it quite ironic for Atiyah to have said that of string theorists when he himself, was a renown mathematical physics himself, which meant he must have known a lot of both pure mathematics and theoretical physics. Or I suppose that merely means that one cannot hope to master both sides, pure mathematics and theoretical physics, and must settle for a balance in order to contribute to mathematical physics.
By the way, thanks a lot for recommending Baez's site, it was very helpful in terms of giving references for relevant books, do you know of any other similar source?
So just to summarize, to make sure I actually understand, mathematical physicists work at the boundary of mathematics and physics and are distinct from pure mathematicians and theoretical physicists in that they do not specialize in a particular subfield of either math or physics, but needs to know a sufficient amount of both areas, and more importantly, they do not have the luxury to be able to specialize in both as pointed out by Atiyah?
Also, I just had one more question. Regarding the modern topics of mathematical physics, are the variants of qft and string theory the most active right now?

Thanks for all the help!
 
  • #14
I know nothing in these respects, but I do know that the head of the mathematics department at UCSB is a leading reasercher in both theoretical physics (in his case string theory) and in algebraic geometry.

Here is a link to his web page where you can find links to class notes he has and published papers, I hope this helps.

http://www.math.ucsb.edu/~drm/
 
  • #15
Oh alright, so basically, I need to know both the general pure mathematics and theoretical physics to contribute to research in mathematical physics. So what exactly, do mathematical physicists specialize in if they don't really specialize any subfield of either pure mathematics or theoretical physics?

Different things. The problem is that mathematical physics isn't a very well-defined term. Could be conceivably any branch of physics or physics-inspired math.
I find it quite ironic for Atiyah to have said that of string theorists when he himself, was a renown mathematical physics himself, which meant he must have known a lot of both pure mathematics and theoretical physics.

He knows some physics, but I don't think he knows physics all that well, on the same level as a specialist in string theory. I thought my adviser was almost like a physicist, but it turns out, yes, he may know some QFT and maybe even a little bit more than that, but he's not really a physicist. Any reasonably good grad student in physics would probably know more than he does about their area of specialization. I suspect Atiyah might be similar. He also said something to the effect that there's a huge gap between a mathematician and physicist, even someone like Penrose (his mathematical brother who became a physicist, after a PhD in algebraic geometry).
Or I suppose that merely means that one cannot hope to master both sides, pure mathematics and theoretical physics, and must settle for a balance in order to contribute to mathematical physics.

You can always hope, but reality could strike and show you how hard it can really be. Most likely, you'd be stuck trying to find a balance.
By the way, thanks a lot for recommending Baez's site, it was very helpful in terms of giving references for relevant books, do you know of any other similar source?

If you read his This Week's Finds, it has lots of papers that you can try to read and more books. I'm not sure if there's anyone else who has quite so good a presence on the web.
So just to summarize, to make sure I actually understand, mathematical physicists work at the boundary of mathematics and physics and are distinct from pure mathematicians and theoretical physicists in that they do not specialize in a particular subfield of either math or physics, but needs to know a sufficient amount of both areas, and more importantly, they do not have the luxury to be able to specialize in both as pointed out by Atiyah?

Well, no, they usually do specialize in some branch of physics. Very specialized, just like most mathematicians. Most just have to find their little niche. Baez worked in loop quantum gravity. He had a few string theory ideas, but I don't think he knew string theory that well.
Also, I just had one more question. Regarding the modern topics of mathematical physics, are the variants of qft and string theory the most active right now?

I'm not sure. I think fluid mechanics might be a big thing, and that's in a pretty different direction.
 
  • #16
I suppose it's the fact that mathematical physics isn't a well-defined term that led me to these questions in the first place!
I was actually looking into David Morrison, and it seemed like he's both a master mathematician and theoretical physicist, yet I don't think he really deals with mathematical physics itself per se.
So basically mathematical physicists do specialize, but usually in branches of physics with direct applications from pure mathematics and vice versa?
It would be the ideal field to go into for someone that loves both pure math and theoretical physics but dislikes the much more abstract topics in math, and also some more rather applied areas in physics like condensed matter?
And finally, it seems like most mathematical physicists work in either functional analysis, symplectic topology, or algebraic geometry, along with their corresponding applications in string theory or fluid mechanics. So I guess I should concentrate in these areas? I was actually quite confused when I was introduced to the notions of the many variants of qft (axiomatic, algebraic, conformal field theory, etc.) do you have any insight into how this relates to math-phys and the topics as described above?

Thanks again!
 
  • #17
So basically mathematical physicists do specialize, but usually in branches of physics with direct applications from pure mathematics and vice versa?

Yes. Some people are able to have more breadth, but it can be hard these days.

It would be the ideal field to go into for someone that loves both pure math and theoretical physics but dislikes the much more abstract topics in math, and also some more rather applied areas in physics like condensed matter?

Maybe, but there are some pretty abstract topics in math that can come in. Condensed matter might be more interesting than you think. If I had stayed in math and could have my pick of anywhere to work, I'd probably be working at Microsoft station q on topological quantum computing, which is condensed matter theory but uses some of the same math as string theory and loop quantum gravity.
And finally, it seems like most mathematical physicists work in either functional analysis, symplectic topology, or algebraic geometry, along with their corresponding applications in string theory or fluid mechanics. So I guess I should concentrate in these areas?

I don't know. Sounds a little bit too broad for a grad student. Typically, you're pretty limited as a grad student if you want to graduate in a reasonable amount of time. Usually, you have to choose one or two main areas. It can be good to branch out a little bit, but in a few years, you can only do so much. You'll figure it out.
I was actually quite confused when I was introduced to the notions of the many variants of qft (axiomatic, algebraic, conformal field theory, etc.) do you have any insight into how this relates to math-phys and the topics as described above?

I worked on topological quantum field theory, which is sort of like conformal field theory, with the metric thrown away, but I don't know too much outside of that. You probably know more QFT than I do already, since I more or less failed at learning it, at least to a level that I was satisfied with. I'm so particular about it, that I basically would have had to almost re-invent the whole subject to put it in a form that I find palatable--see Baez's seminar notes on quantization and categorification for a start on what I have in mind there, along with maybe Feynman and Hibbs. The problem with me is that I'm such a skeptic that I can't really move on until I understand it so well I feel like I could have invented it myself. I'm always asking, "why would you do that?" Maybe taking the road less traveled is good sometimes, but I think if you're not a super-genius, it can be untenable as far as academic careers are concerned.

It turns out that you don't really have to know any physics to speak of to work on at least some aspects of TQFT. It was mainly out of curiosity that I tried to pursue physics, but topology took up most of my time.
 
  • #18
You're asking many great questions that I've asked myself and researched over the past couple of years regarding what "mathematical physics" is.

Broadly speaking I would divide "mathematical physics" into two categories.

Firstly there's the type of mathematical physics, where you are trying to put already existing, and well-understood physics on a rigorous foundation. Axiomatic QFT is an example of this and there are many people working on this type of stuff, usually housed in mathematics departments. The main tool which seems to be used is functional analysis. I personally don't find this too exciting so I don't know much about it.

Then there's the other kind, which is much less well-defined, sometimes given it's own name: "Physical Mathematics". This is where people like the David Morrison you mention fit in. This is a very broad field and there are a lot less strict rules as to how to proceed. In this what usually happens is you try to study mathematical topics that show up a lot in physics, and use the tools of physics to come up with new mathematical results. The Feynman path integral is an extremely important tool for doing this. As an example, the Atiyah-Singer index theorem has a proof entirely based on path integrals and supersymmetric quantum mechanics. Understanding the low-level manifestation of this in the form of Gauss-Bonnet theorem is not too hard actually (see the Mirror Symmetry book I mention later). Other general topics which are very important for this field include topological QFTs, supersymmetric QFTs, CFT and string theory on the physics side, and differential geometry, topology and complex and algebraic geometry on the mathematics side (with many other subtopics depending on your specialty). Some early papers of Witten are a great starting point to see what kind of stuff is done here. ("Quantum Field Theory and the Jones Polynomial" is a classic for example). A couple of other very broad topics of investigation in this field which I'm somewhat familiar with include things like topological string theory and mirror symmetry.

Overall, I think an excellent starting point, and a very comprehensive and pedagogical guide to a large subset of physical mathematics is the text "Mirror Symmetry" by K. Hori, C. Vafa, et al, which I find to strike a very good balance between mathematics and physics.

Grassman1 said:
It would be the ideal field to go into for someone that loves both pure math and theoretical physics but dislikes the much more abstract topics in math, and also some more rather applied areas in physics like condensed matter?

Absolutely! Which is why I'm trying to get into this field for graduate school. I find that the best way to describe people who work in this field is that they are both mathematicians and physicists, but also neither! Both since their toolbox includes a wide variety of mathematics and physics, and neither because on the math side the standards of proof are much more relaxed, and on the physics side, since you aren't really predicting anything for experimentalists!

I do have to warn you though: very seemingly abstract topics like category theory DO show up in mathematical physics (look up homological mirror symmetry), and similarly stuff that sounds very applied, like "condensed matter theory" is actually pretty interesting mathematically speaking as well (like homeomorphic mentions). The difference comes more from the general rules and conventions of the field, rather than including or excluding specific topics.

Regarding research: The best possible way is to find an advisor who works in this field and ask him to guide you! Most likely he or she will start by mentioning some foundational book or paper to you which should get you started.
 
Last edited:
  • #19
That book does look interesting, I will look further into it!
So what kind of prerequisites do you recommend to learn before tackling things like Witten's early papers? Do you also have in mind other good, relevant books or papers by other authors?
In addition to the topics you mentioned above, are there any other topics such as fluid mechanics or CMT that u mentioned, that are as cutting edge at the frontier of modern research, or are things like string theory and qft variants the most popular right now?
And finally, just to clarify, do you think most people that do mathematical physics also specialize concurrently in either another physics or mathematics field? Or do those that aspire to work at the boundary solely specialize in topics in mathematical physics itself?
And on that note, should one just gain enough knowledge from both the physics and mathematics side, and then spend most of their time with cutting edge topics in mathematical physics such as mathematical string theory, cft, etc., which means that if I really get into mathematical physics and become extremely interested in it, it might do me better to stop focusing as much on algebraic geometry? As I mentioned earlier above, with the way I studied category theory from Awodey, and the way an aspiring category theorist would study (reading more advanced texts, going into research papers), exactly how much should I go into each subject relevant to the topics in mathematical physics? Surely, it should not be as much as one that plans to specialize in that subject, but I'm not sure exactly how much.

Thanks for your insights!
 
  • #20
Grassman1 said:
That book does look interesting, I will look further into it!
So what kind of prerequisites do you recommend to learn before tackling things like Witten's early papers? Do you also have in mind other good, relevant books or papers by other authors?

I would suggest that your first course of action should be to get familiar with path integrals. That's the most widely used tool at the starting stage. It's what Alvaraz Gaume used for the supersymmetric proof of Atiyah-Singer. It's what Witten used to derive the Jones polynomial from Chern-Simons theory. It's what's used to show that the topological string generates Gromov-Witten invariants. Once again, the MS book is excellent for this, and also for the general prerequisites, as it develops things very systematically (including the prerequisite physics and mathematics).

In addition to the topics you mentioned above, are there any other topics such as fluid mechanics or CMT that u mentioned, that are as cutting edge at the frontier of modern research, or are things like string theory and qft variants the most popular right now?

Well I haven't heard much about the fluid mechanics and it's relation to mathematical physics. I heard Shiraz Minwalla did some interesting work relating string theory to fluid dynamics, but I don't know much beyond that.

Regarding CMT, the key words to look out for include "topological phases of matter", "topological insulators", "topological quantum computation"

And finally, just to clarify, do you think most people that do mathematical physics also specialize concurrently in either another physics or mathematics field? Or do those that aspire to work at the boundary solely specialize in topics in mathematical physics itself?

I think mathematical physics is a sufficient specialization in itself. You may have the occasional person who has very broad research interests, but that's not the case for the majority.

And on that note, should one just gain enough knowledge from both the physics and mathematics side, and then spend most of their time with cutting edge topics in mathematical physics such as mathematical string theory, cft, etc., which means that if I really get into mathematical physics and become extremely interested in it, it might do me better to stop focusing as much on algebraic geometry? As I mentioned earlier above, with the way I studied category theory from Awodey, and the way an aspiring category theorist would study (reading more advanced texts, going into research papers), exactly how much should I go into each subject relevant to the topics in mathematical physics? Surely, it should not be as much as one that plans to specialize in that subject, but I'm not sure exactly how much.

I'm still figuring this part out myself. I think you would be right in saying that you surely don't need to go in the same level of depth as a traditional mathematician would when you first start learning the subject. "Working knowledge" is the important word I think. One thing I noticed about my current mentor is that even though he may not know all the gritty details about the proofs in complex geometry, algebraic geometry etc, he does have an excellent intuitive understanding of what's going on and as a result, is able to use the stuff very fruitfully in his work. So while knowing every little detail may not be important, having an intuitive understanding is indispensable. I would also think that how deeply one does the math also probably depends on the specific department you work in, since this flavor of mathematical physics is pretty evenly divided with regards to whether people are working in mathematics or physics departments.
 
  • #21
Alright, I guess I will have to look at the MS book then. By the way, do you happen to have any list of mathematical physics books that you have used or know of?
I just see a lot of professors whose specialties include mathematical physics and some other relevant pure mathematical areas such as functional analysis or algebraic geometry, which is why I asked. On the other hand, are most of the current research areas in mathematical physics just the areas that you mentioned above in your first post in terms of the two different areas. Is it uncommon for people to work in both areas of mathematical physics?
So I suppose that I should know each relevant area well enough to be able to apply it to the problems I work on, but I don't need to necessarily know everything about the current research of it and should concentrate on specific topics regarding mathematical physics after I have the prerequisites down?
In terms of mathematical physics and its prerequisites, it actually seems to me, to be one of the hardest areas in mathematics and physics. I have heard a lot of people say that algebraic geometry is the hardest mathematical field as it incorporates a lot of different areas of mathematics including (differential/algebraic topology, complex analysis, many other areas of abstract algebra, etc.), but it seems that mathematical physics requires even more of these fields, and includes an extensive amount of algebraic geometry just to enter the field. Is this actually true?
Thanks!
 
  • #22
Grassman1 said:
Alright, I guess I will have to look at the MS book then. By the way, do you happen to have any list of mathematical physics books that you have used or know of?

By the way, it's available for free online as a pdf.

I just see a lot of professors whose specialties include mathematical physics and some other relevant pure mathematical areas such as functional analysis or algebraic geometry, which is why I asked. On the other hand, are most of the current research areas in mathematical physics just the areas that you mentioned above in your first post in terms of the two different areas. Is it uncommon for people to work in both areas of mathematical physics?

The two "subareas" are not really subareas. They aren't really related and there's no real overlap. The main reason is that the tools used in the "physical mathematics" field would be considered "non-rigorous" by the guys working in the axiomatic QFT/functional analysis camp. So no, you certainly don't need to know functional analysis/axiomatic QFT to do well in string theory/physical mathematics and vice versa. The name "mathematical physics" is really vague and ill-defined so I wouldn't take it too seriously. People call many different things "mathematical physics" and there's not necessarily a connection between what different people are working on.

So I suppose that I should know each relevant area well enough to be able to apply it to the problems I work on, but I don't need to necessarily know everything about the current research of it and should concentrate on specific topics regarding mathematical physics after I have the prerequisites down?
In terms of mathematical physics and its prerequisites, it actually seems to me, to be one of the hardest areas in mathematics and physics. I have heard a lot of people say that algebraic geometry is the hardest mathematical field as it incorporates a lot of different areas of mathematics including (differential/algebraic topology, complex analysis, many other areas of abstract algebra, etc.), but it seems that mathematical physics requires even more of these fields, and includes an extensive amount of algebraic geometry just to enter the field. Is this actually true?
Thanks!

It's easy to get overwhelmed but you shouldn't be! You said you've been through Wald and Peskin and Schroeder, and also know a good deal of math. That's already much further than most people would get! Here are some good follow ups:

"String Theory" by Polchinski. Essential if you want to do anything related to string theory (especially volume II)

"Mirror Symmetry" by Hori et al. I know I've mentioned this many times, but it really is a bible

"Conformal Field Theory" by Di Francesco et. al. (CFT bible)

"Principles of Algebraic Geometry" by Griffiths and Harris. (AG bible for physicists)

"Calabi-Yau manifolds: A Bestiary for Physicists" by Hubsch. (CY manifolds really are the bread and butter of many research areas.)

"Riemann Surfaces" by Donaldson. (this should be a pretty good follow up and very accessible after courses in complex analysis and algebraic topology)

And for motivation, and if you want to feel extremely dumb and incompetent once in a while, take a look at

"Quantum Fields and Strings: A course for Mathematicians" Volumes I and II. This book contains lecture notes for a year long school where leading physicists and mathematicians were trying to teach each other their ways. A very intimidating book and I hope to understand some of it one day.

I certainly haven't finished (and in some cases haven't started) many of these, but I do know that most of these are very important for mathematical string theory and generally "physical mathematics."

Once again, an actual advisor/mentor would be able to guide you much better than me! You said you're a graduate student. Is there someone you can talk to who is interested in similar things? Certainly go to him/her and ask for advice!
 
Last edited:
  • #23
Alright thanks for all your help. So just to clarify,
The two subareas mentioned above aren't really interrelated, but if one wants to, it wouldn't be too overwhelming to work on both at once right? But in general, those two mentioned form the basis for modern research in mathematical physics and physical mathematics? And in general, professors that work in an area of math and also say that they work in mathematical physics, may not actually work in mathematical physics in the sense as you defined right?

Thanks for all the book recommendations! I will try to look at a few of them and work through them as my schedule allows. By the way, do you think mathematical physics would be one of the hardest fields to get into for the same reason people think algebraic geometry is one of the hardest mathematical subject?

And yes, there are a couple people that work in mathematical physics in the math department here. I'll go ask them for advice soon.
 
  • #24
If you have any interest in fluid mechanics, take a look at V I Arnold's book on that subject, Topological Methods in Hydrodynamics. I haven't read it, but it looked pretty interesting and Arnold is awesome. I guess he falls into the mathematical physicist category as well.
 
  • #25
The easiest way forward for you might be to look at specific problems you are interested in, rather than attempting to obtain general answers. So try listing different problems that interest you, and people can classify the research approach you would need to take.

Figuring out what I wanted to to boiled down to identifying an exact problem I found interesting (in my case, how to more efficiently sample the phase space of high-degree of freedom biological systems such as membrane proteins or unfolded proteins) and then talk to somebody knowledgeable, at which point it became apparent that theoretical statistical physics/chemical physics/biophysics groups were the places to target.
 
  • #26
Thanks for the recommendation with the hydrodynamics book.
So just to clarify,
The two subareas mentioned above aren't really interrelated, but if one wants to, it wouldn't be too overwhelming to work on both at once right? But in general, those two mentioned form the basis for modern research in mathematical physics and physical mathematics? And in general, professors that work in an area of math and also say that they work in mathematical physics, may not actually work in mathematical physics in the sense as you defined right?
By the way, do you think mathematical physics would be one of the hardest fields to get into for the same reason people think algebraic geometry is one of the hardest mathematical subject?
 
  • #27
The two subareas mentioned above aren't really interrelated, but if one wants to, it wouldn't be too overwhelming to work on both at once right?

Personally, I think even one area is too overwhelming to work on these days, but that's just me. I think it would be more realistic to expect to work on two bigger areas later in your career, rather than right now. Being too unfocused is an easy trap for a graduate student to fall into. I know I did. Baez started out doing constructive field theory (the analysis side) and then moved over to loop quantum gravity (more topological), but that's over the course of his career. Part of how you deal with such immense subjects is you have to be really patient and take it one bit at a time.

By the way, do you think mathematical physics would be one of the hardest fields to get into for the same reason people think algebraic geometry is one of the hardest mathematical subject?

Yes. If you look at requirement for a mathematical physics PhD, they have tons of physics and tons of math, so it's a lot to learn.
 
  • #28
Would you guys say that a background in physics is necessary to enter these fields/ programs. I only have room to fit in a math major and will have only taken the basic mechanics and EM course. Would this be sufficient?
 
  • #29
Would this be sufficient?

For TQFTs or gauge theory or something, it would probably be more than enough, but then it will just be pure math, really. E and M plus mechanics plus math major was exactly the background I had going in. I taught myself a lot more physics during grad school. There's a great danger of becoming a pure mathematician, though, if you get a math PhD and only try to squeeze in as much physics as you can on the side. I would strongly recommend not getting a math PhD, if you are more concerned with understanding nature than with math, although there are a handful of people who might be suitable advisers in math--just very limited choices, which is not a good thing. You can't apply to a program just to work with one guy because there's no guarantee that will work out. I think I know more than one person who did that and then ended up doing something else.

Physics grad school usually requires quantum mechanics, at least.

Also, it's easy to think that these fields seem cool and exciting when you an undergrad and you can only catch little glimpses of it, but it might not be quite as glamorous as it seems. I saw this when I was an undergrad, just around the time I was thinking about applying to grad school, and it looked like a lot of math:

http://www.superstringtheory.com/math/math1.html
http://www.superstringtheory.com/math/math2.html
http://www.superstringtheory.com/math/math3.html

I got all excited and even though it looked like a lot, I thought it must be really cool to know that much math. Now, I know all the math, except a few of the more advanced subjects there. It was cool to learn it and be able to look at it now and say, yeah, that's easy, I learned most of that back in my first couple years in grad school, but really, you actually probably have to learn about 5 times that much, when you throw in all the physics and all the other math that's not listed, and all the papers you have to read, so it's a rather severe underestimate. You do it over a lifetime, but still, you have to be unbelievably hardcore about this stuff to actually succeed. I'm not sure you can really have much of a life, if you do.

http://www.reddit.com/r/Physics/comments/271apx/a_view_from_an_exstring_theorist/
 
  • #30
Reading that reddit thread makes me glad I've decided to avoid the theoretical physicist/string theorist route.
 
  • #31
Reading that reddit thread makes me want to go that route even more :D
 
  • #32
Read it again then. It seems to be an extreme example of how hyper-competition in science can squelch the process of actual scientific exploration.
 
  • #33
Sure, but there are other rewards that are not financial her refers to. The way I see it, he got to study a fascinating field of physics and is doing just fine now. I guess it depends how much money matters to you. If you have a Phd in physics the general consensus is that you will do fine financially, but may not be doing physics after your phd.
 
  • #34
Yeah it's certainly an interesting thread with lots of good insight from an experienced guy. I would be reconsidering theoretical physics as well had I resonated with what he was saying. But in fact, I've greatly enjoyed the journey so far and while I do find parts of physics to be quite boring, I really enjoy most subjects in theoretical physics, along with the relevant mathematics! The comments about the competition post-PhD are quite scary though, but who knows what the situation down the road will be like. Maybe there will be another surge in hiring string theorists... :P
 
  • #35
If you have a Phd in physics the general consensus is that you will do fine financially, but may not be doing physics after your phd.

That may be true, but I think it's only true if you are prepared. If you are unprepared, like me, you will probably end up underemployed and have quite a hard time after you graduate. I have another number theory PhD friend who graduated just before me who is in the same situation. And there are plenty of anecdotes of people having trouble, so there's no guarantee that it won't be a very painful transition to make. I don't care about money at all, except as a safety net and a way to being able to do things like quit my job and be self-employed, but I'm not really able to even make a living right now, which is not very cool.
 
  • #36
Besides your horrible research experience (which is not the same for everyone) did you enjoy grad school and everything you learned? I guess that is my point is that you did get something out of it. That being an education that you actually value. Maybe it will be rough to get a job after, but that is something hopefully a young student like my self knows, though may not fully understand the consequences. My main goal of grad school ( I am a lower division physics and math major struggling with calc 2, I don't know what I am talking about) is to get a education and to have that rewarding experience. I hope to one day be in the top (1% ?) of society with a Phd.
 
  • #37
homeomorphic said:
That may be true, but I think it's only true if you are prepared. If you are unprepared, like me, you will probably end up underemployed and have quite a hard time after you graduate. I have another number theory PhD friend who graduated just before me who is in the same situation. And there are plenty of anecdotes of people having trouble, so there's no guarantee that it won't be a very painful transition to make. I don't care about money at all, except as a safety net and a way to being able to do things like quit my job and be self-employed, but I'm not really able to even make a living right now, which is not very cool.

How could one go about "preparing" themselves? What is it that all the physicists/mathematicians who transition into finance/wall street usually do to prepare themselves for such a job?
 
  • #38
Besides your horrible research experience (which is not the same for everyone) did you enjoy grad school and everything you learned?

Of course, I didn't enjoy all of it, but it was okay, other than the thesis. It may not be the same for everyone, but it is similar for all too many people. Maybe I hated my thesis with a particular ferocity during the last couple of years, but among all the grad students I know, it's very, very common to have similar feelings.

I guess that is my point is that you did get something out of it. That being an education that you actually value.

Yeah, I got SOMETHING out of it. I'm not sure I value it that much, though. I would say it's pretty clearly a net loss, if you consider the opportunity cost. I have plans to get some mileage of my general math background, but I'm not sure what I'll do with topology, which I spent so much time on. But even with the general math background, beyond the undergraduate level, I'm not sure it's that useful unless you have a plan of how you can use it. There are very few jobs out there that make use of graduate level math. Even with stuff like calculus, it's kind of shocking how little it's actually used out there in the real world.

You should look at some of the job postings out there. It's really pretty terrifying. I think maybe the requirements are a little exaggerated, but still. I heard a lot of crap that lead me to not worry too much about getting a job, like "you can always go to Wall St.", and that's probably what lead me to the place where I am now, not being about to get a job. When you look at what employers are actually asking for, you realize it's not that easy. You have to find a way to make them money, as soon as possible, in this economy, and that doesn't make for very easy career transitions, if you study something that's a little further from the practical side.
 
  • #39
How could one go about "preparing" themselves? What is it that all the physicists/mathematicians who transition into finance/wall street usually do to prepare themselves for such a job?

I think there's another option which is just to get really lucky. For example, in my own graduate program, I got screwed over as far as having good contacts in the math program (it really helps to know where the other guys who got your same PhD got jobs), but there's someone in another program I know who knows tons of math PhDs and former grad students who didn't finish who work in all kinds of interesting places outside academia. So, it was kind of the luck of the draw, there--and at least I was lucky enough to know someone in that other program, which lead to at least a few interviews, and some other leads that I'm still pursuing. If you don't want to depend on luck, you can see that this problem can be solved with a little networking. If you happen to have some conference buddies or something in a different program and that program happens to have a lot of people who get jobs in industry, then you're cooking with gas. For finance, it also helps to work on programming skills.
 
  • #40
I think we should have a goal in Physics. We should aware of what we want to achieve. And then work hard to get the goal. I am sure that if you work hard then you will never struggle for jobs and money.
 
  • #41
I think we should have a goal in Physics. We should aware of what we want to achieve. And then work hard to get the goal. I am sure that if you work hard then you will never struggle for jobs and money.

That's a lot like what I've been trying to say, but unfortunately, the goal could possibly have to have more to do with jobs and money than with physics, if we're being realistic, although if you do more marketable physics (probably not string theory--more like computational physics or semiconductor stuff), it could have something to do with physics, too. In acting, not everyone can be a movie star, so you shouldn't be lured in by what the movie stars are doing because you may not get to do what they do.

I should add that I probably would have a job now if I had bothered to be very prepared for programming interviews, but that takes a fair amount of work. If you are just smart and know basic programming, you aren't going to be able to do it well enough on the spot, so that's not enough. General interviewing skills can also be a factor, so it's good to get going on that early. I didn't get a good start on it because I didn't want to have the shame of staying another year and being an 8th year student, but you are really supposed to get your thesis more or less done before then, so you have that last year to look for a job and you have student status, so you could go for an internship in the summer.
 
  • #42
Even string theory is more marketable than pure math though, at least according to the reddit thread. The culture of physics, even at its most esoteric (and arguably dubious), is still concentrated on modelling mathematically the real world.
Several theoretical biophysicists in groups around mine have gotten good jobs immediately post PhD which have nothing to do with biophysics, because physicists are good mathematical modellers. How much time to pure mathematicians actually spend applying the mathematics to modelling problems?
 
  • #43
I'll grant you that, but the thread does pretty much imply string theory isn't that marketable, unless you have additional skills, and it's a little bit more complicated than just modeling vs not modeling. I've heard plenty of anecdotal stories about physics PhDs having trouble getting a job, too. I think the biggest factor in getting a mathematical modeling type job is not so much whether you are dealing with the real world in your studies, but whether you are capable of doing numerical type programming. Beyond that, specific subject matter can make a difference.

Some pure math people do a lot of programming and computational stuff. Most don't.

How much time to pure mathematicians actually spend applying the mathematics to modelling problems?

Chances are, they did a bit at some point. For example, I took a course in mathematical modeling in my undergrad. But one course doesn't help all that much (also, I was an EE guy for a while, but I don't get much credit for it because all I have is a minor). But the modeling that physicists do might not always be the kind of modeling they need to do in industry, especially if they've been doing string theory. Some people say the mathematicians outperform the physicists as quants, and that makes sense to some degree because I don't see that physicists have a huge advantage there, unless you get into the specifics of whether they've been programming and so on. A "pure" mathematician who studies probability might be in better shape than, say, the average particle physicist, as far as Wall St. is concerned (by the way, probability seems to be a more attractive option as a subject for a math person who is interested in physics to study). Also, math is a little better for academic jobs, so there's a trade off there, which works against me a bit.

Another thing is I'm not sure of the size of the mathematical modeling market, but I know it's dwarfed by other programming jobs.
 
  • #44
I think it's a tricky sort of question that has no clear answer.

I guess purely mathematical physicist might be:
1. someone who takes the theories and discoveries of physicists and tries to put it all in truly strictly formal, rigorous mathematical terms
2. someone who tries to look at what physics guys came up with and use that to expand into new fields and methods in math in general and expand them out way away from any potential known ties to the physical world
3. someone who tries to stick to the raw math a bit more than the avg physics guy?

It does seem that over the course of history that almost all of the great insights into the physical laws seem to have come from physics guys and not pure math guys or the strictest sense of mathematical physics guys, they seem to get to bogged down in the purity of the math or don't have enough of the magical ability to connect the real world and experiment and come up with reality based concepts. Maybe Witten and Penrose don't quite fit that, but it seems that mostly seems to hold. Most of the guys like Dirac, Einstein, Feynman, Weinberg and so on and so forth were probably not quite what you think of as mathematical physicists.

Even in physics I've met some post docs who can calculate up a storm like nothing at all, like crazy good holy cow, but who then seemed to have a terrible time at visualizing or thinking certain concepts out.
 
  • #45
Even in physics I've met some post docs who can calculate up a storm like nothing at all, like crazy good holy cow, but who then seemed to have a terrible time at visualizing or thinking certain concepts out.

Actually, quite a few pure mathematicians are known for not liking calculations. Ironically, I actually chose to do a math PhD because there wasn't enough physical intuition in the physics classes that I took. I thought it would be easier to learn a related subject where there was more intuition, while working on my own physical understanding, rather than being bombarded by tons of calculations by the physics professors. Actually, the physics graduate classes I took weren't so bad, so I probably would have been happier in physics, after all. I'm sure I would have suffered a bit, but in math, I had the fundamental problem that I wasn't really interested in it for its own sake, but more as a tool to understand physics, and that was not really what the PhD program had in store for me, so I was not very happy with it.

Knowing the math concepts is often what gives you the intuition behind the gruesome calculations. In fact, if you look at the Nobel prize winners, it's quite common for them to have been double majors in math and physics. I think the reason why you see physicists making more contributions to physics is just the obvious reason, rather than some magical ability. That is the simple fact that they know more about physics because they spend more time on that subject. Especially more recently when the subjects of physics and math have expanded to a such a ridiculous extent that it's harder and harder to know both subjects. That has been one of my main points in this thread. Go back to the time of Fourier and Lagrange and you can't even tell whether they were mathematicians or physicists. There may be a lot of very formal mathematicians who can't conceptualize, though, just as there are physicists who can't.

It may not even be a mathematical physicist's goal to contribute to physics, per se.
 
  • #46
Very good points by Homeomorphic and Porcupine, since the question of studying mathematical physics is a question of what it is you want to do. Do you want to contribute to our knowledge of physics? Becoming a mathematical physicist is nowhere near the most efficient route, although it can be pointed out that theoretical physicists in fundamental physics are producing hardly any new physics either because the field has experimentally stagnated.
 
  • #47
"I learned to distrust all physical concepts as the basis for a theory. Instead, one should put one's trust in a mathematical scheme, even if the scheme does not appear at first sight to be connected with physics. One should concentrate on getting an interesting mathematics."

--P.M. Dirac

You can debate how much this is true, even in the case of Dirac himself (his electron sea seems to be one counter-example), but it is interesting that he would say that. You also have to note that this is more peculiar to modern physics, the reason being that physicists studied things that didn't lend themselves to normal physical intuition as well. So, maybe mathematical intuition is more powerful than physical intuition in these contexts (and admittedly, you may have to do some fiddling with equations without too much intuition at times). Also, after the theory has been created, you may try to gain more physical intuition about it, so that you can learn, remember, and apply it more easily. Plus, I'm not sure that you should completely abandon the physical intuition when creating a new theory, but I take his point that you should be willing to look beyond it. I think it's more of a matter of being willing to abandon ANY old ideas, including physical ones.
 
  • #48
So I am taking a course in statistical mechanics taught by a condensed matter theorist. He often stresses the utility of physical intuition and reasoning for solving problems, and can often make excellent approximations or quickly work through derivations using mostly physics and a dash of mathematics; and this is mainly quantum statistical mechanics, mind you. He is very experimentally minded, even though he is a theorist, and draws parallels between what goes on in the class and what experimenters can and cannot do.

Now, if you are in a field where the experiments are a dead end or a non-starter, very mathematical arguments tend to creep in and rise to prominence, but it is crucial to recognize how useless these have been for the actual purpose of physics, which is to calculate things about how the world works. At best, a dash of differential geometry and a taste of abstract algebra have produced some results decades ago, but it's mostly just good ole' 19th century calculus and, relative to pure math, hand wavy heuristics. Sophisticated mathematical reasoning has produced apparent dead ends like supersymmetry, or experimentally unverifiable philosophy such as the singularity theorems, and that's about it.
 
  • #49
Now, if you are in a field where the experiments are a dead end or a non-starter, very mathematical arguments tend to creep in and rise to prominence, but it is crucial to recognize how useless these have been for the actual purpose of physics, which is to calculate things about how the world works. At best, a dash of differential geometry and a taste of abstract algebra have produced some results decades ago, but it's mostly just good ole' 19th century calculus and, relative to pure math, hand wavy heuristics. Sophisticated mathematical reasoning has produced apparent dead ends like supersymmetry, or experimentally unverifiable philosophy such as the singularity theorems, and that's about it.

I would tend to agree, for the most part. Physics, as a whole, is a pretty big territory, and there may be corners of it that are affected more by results in math. My own goal is usually just to understand things deeply and make things obvious to myself, and I think a lot of math helps with that. The stuff that most mathematicians do in their research is pretty much irrelevant to my goals at this point, but a lot of graduate level math does come into play in my conceptualizations, and maybe more sophisticated math would come into play if my physics level were higher than what it is. It's just a hobby for me, now, though. I also suspect math could be much more useful if people bothered to explain it in a more reasonable way, rather than being so formal all the time.
 
  • #50
Grassman1 said:
I heard that mathematical string theorists need to know a lot of k-theory and noncommutative geometry.

not completely right. I know active string theorists in some major universities that never scratch anything related to noncommutative geometry. In fact, noncommutative geometry is in its essence an alternative to string theory. String theorist (well, SOME of them) got interested to NCG because of its ability to rebuild some known experimental fact where string theory had not so good results.

In fact, string theory in itself is a so huge field that many of them can't even compute a feynman diagram (no joke). They are just interested in building models that are consistent with representations that generates the number and type of particles that we know, but anything experimental such as feynman diagram or calculating of scattering processes does not interest them. Of course, not all string theorist are like this.
 
Back
Top