Guidlenes for tansforming graphs

  • Thread starter Thread starter FiveAlive
  • Start date Start date
  • Tags Tags
    Graphs
FiveAlive
Messages
16
Reaction score
0
This is a little more open ended then most HW questions. I'm helping a friend with some HW and we need to transform a parabola. Ultimately we have to find the tangent line, vertex, ect but I'm failing to recall the rules on how to manipulate the parabola to be in the domain of the graph we need and the sharpness of the curvature.

Can anyone recommend a webpage that lays out the the guideline of how changing a function will change the graph? I remember a few things like changing X^2 to -X^2 will invert the parabola but I've been surfing the web for a bit and haven't found anything concise and I can't find my old textbook.

Thanking you in advance,
Linus
 
Physics news on Phys.org
The general equation of a parabola opening up or down is

y - b = k(x - a)2.

The a and b determine the location of the vertex at (a,b). k positive or negative determines opening up or down. k large or small determines whether the parabola is "skinny" or "fat".
 
Hey thanks so much. Any suggestions for how to rearrange y - b = k(x - a)^2 so it looks more like a quadratic equation?
 
Normally you want to take a quadratic equation and complete the square to write it this way. But go ahead and multiply it all out and add b to both sides and you will have y as a quadratic equation expressed in powers of x.
 
You're brilliant. Thanks again for the help.
 
Thread 'Use greedy vertex coloring algorithm to prove the upper bound of χ'
Hi! I am struggling with the exercise I mentioned under "Homework statement". The exercise is about a specific "greedy vertex coloring algorithm". One definition (which matches what my book uses) can be found here: https://people.cs.uchicago.edu/~laci/HANDOUTS/greedycoloring.pdf Here is also a screenshot of the relevant parts of the linked PDF, i.e. the def. of the algorithm: Sadly I don't have much to show as far as a solution attempt goes, as I am stuck on how to proceed. I thought...
Back
Top