A GW Binary Merger: Riemann Tensor in Source & TT-Gauge

MrFlanders
Messages
2
Reaction score
0
TL;DR Summary
There seems to be a difference in the Riemann tensor when you compute the R_{0101} component of the Riemann tensor along the x-axis for the source and TT-gauge. After a lot of reading and thinking I am unable to find why this might be the case.
In the book general relativity by Hobson the gravitational wave of a binary merger is computed in the frame of the binary merger as well as the TT-gauge. I considered what components of the Riemann tensor along the x-axis in both gauges. The equation for the metric in the source and TT-gauge are given in 18.19 and 18.21 respectively. In the source gauge R_{0101} = -0.5*(w/c)^2 h_11 and in the TT-gauge R_{0101} = 0 since the Riemann tensor is invariant they should be the same though. I can seem to find out why ?
 
Physics news on Phys.org
MrFlanders said:
since the Riemann tensor is invariant they should be the same though.
No, this is not correct. The Riemann tensor being "invariant" ("covariant" would be a better term) does not mean each individual component of the tensor is the same in any coordinate chart. It only means that scalar invariants derived by contracting the Riemann tensor (the simplest being the Ricci scalar) are the same in any coordinate chart.
 
If you'd say "tensor components", everything would be clear. Of course, tensors are by definition invariant objects, but tensor components transform when changing the (tangent) basis and co-basis.
 
  • Like
Likes PhDeezNutz and malawi_glenn
PeterDonis said:
No, this is not correct. The Riemann tensor being "invariant" ("covariant" would be a better term) does not mean each individual component of the tensor is the same in any coordinate chart. It only means that scalar invariants derived by contracting the Riemann tensor (the simplest being the Ricci scalar) are the same in any coordinate chart.
In general this would not be the case but in the linearised theory of gravity where the Riemann tensor is approximated to first order in the metric perturbation h. It can be shown directly from the transformations laws that each component of the Riemann tensor is Invariant to first order in the metric perturbation h.
 
MrFlanders said:
In general this would not be the case but in the linearised theory of gravity where the Riemann tensor is approximated to first order in the metric perturbation h. It can be shown directly from the transformations laws that each component of the Riemann tensor is Invariant to first order in the metric perturbation h.
I don't get what your are claiming. Even in SR, the components of a 4-vector do not stay the same after a Lorentz transform. Only scalars constructed from them stay the same.
 
  • Like
Likes vanhees71 and malawi_glenn
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top