Gyroscope- Angular Speed, Rotational Kinematics, Precession

AI Thread Summary
The discussion centers on calculating the time required to accelerate a gyroscope to a specific angular speed and the torque needed for precession. The gyroscope has a mass of 6.50×10^4 kg and a radius of 2.30 m, rotating at 500 rev/min. The participant initially uses the moment of inertia and power equations but struggles with assumptions regarding torque and angular acceleration. They later realize the need to apply energy principles, specifically the relationship between kinetic energy and power, to find the correct time to reach the desired speed. The conversation highlights the complexities of rotational dynamics and the importance of using appropriate equations for varying angular velocities.
jcwhitts
Messages
9
Reaction score
0
Gyroscope-- Angular Speed, Rotational Kinematics, Precession

Homework Statement



A Gyro Stabilizer. The stabilizing gyroscope of a ship is a solid disk with a mass of 6.50×10^4 kg; its radius is 2.30m, and it rotates about a vertical axis with an angular speed of 500 rev/min.

1) How much time is required to bring it up to speed, starting from rest, with a constant power input of 7.45×10^4 W?

2)Find the torque needed to cause the axis to precess in a vertical fore-and-aft plane at an angular rate of 1.00 degree/sec.



Homework Equations


I may be incorrect as I apparently keep coming up with the wrong answer. However, the moment of inertia for a solid cylinder I=1/2mr^2. P=power, I=moment of inertia, w=angular speed, a=angular acceleration, T=torque.

P=Tw. Ia=T. W=at.

For the second question, I'm a lot more lost. I'm guessing it's Torque/angular momentum but I continue to get incorrect answers.

The Attempt at a Solution



Ok, perhaps it's an issue with me actually understanding what is given because I would assume you would need a length from a pivot in order to work with a gyroscope. Since there is no such info in the problem, I assume that the disk is rotating directly on the pivot point.

I started with finding I. I=1/2(6.5*10^4)(2.3^2). I get 171925. Next, I use the Power equation to find the torque, using the given power and target angular speed. 7.45*10^4=T(500(rev/min). I convert 500 Rev/min to rads per second using 500*(2pi/60) to get 52.3599.

Then, solving for T, (7.45*10^4)/52.3599 to get 1422.84.

T=Ia. Using 1422.84=171925a, we find alpha to be .008276. Here is where I think there is something I may not be accounting for with torque due to the weight of the disc, but I assumed that since it is acting at the center of mass there is no torque. I tried the solution with torque being equal to mg + 1422.84, and the answer is still wrong.

Anyway, now that we have a, and given that the gyro starts from rest, w=at. So, 52.3599/.008276 = t, which =6327.

This answer is incorrect. Am I making incorrect assumptions somewhere as to using equations that wouldn't apply in this situation or something I am missing completely? Any help is much appreciated.

As for the precession part, that can wait until after I've figured out the first part.
 
Physics news on Phys.org


Any ideas?
 


Figured it out. My approach went off on a tangent because the angular velocity is not constant. Instead, you use the energy approach K=1/2Iw^2 and know that the work is equal to the change in kinetic energy, and Power is work over time. So, Power * change in time =W.

1/2Iw^2=P*t, divide by the given power.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top