silmaril89
- 85
- 0
Homework Statement
The Hamiltonian for two particles with angular momentum j_1 and j_2 is given by:
\hat{H} = \epsilon [ \hat{\bf{j}}_1 \times \hat{\bf{j}}_2 ]^2,
where \epsilon is a constant. Show that the Hamiltonian is a Hermitian scalar and find the energy spectrum.
Homework Equations
Not really any specific to put here.
The Attempt at a Solution
I tried simplifying the Hamiltonian using suffix notation with the Einstein summation convention. I was able to get the following:
\hat{H} = \epsilon [( \hat{\bf{j}}_1 \cdot \hat{\bf{j}}_1) ( \hat{\bf{j}}_2 \cdot \hat{\bf{j}}_2) - \hat{j}_{1 i} ( \hat{\bf{j}}_2 \cdot \hat{\bf{j}}_1) \hat{j}_{2 i}].
Now I have the problem that since \hat{j}_{2i} doesn't commute with ( \hat{\bf{j}}_2 \cdot \hat{\bf{j}}_1), I can't simplify the Hamiltonian further. I'm not sure what my next steps should be.
Last edited: