I Hamiltonian for an Optical Phase Shifter?

Twigg
Science Advisor
Gold Member
Messages
893
Reaction score
483
Hey all,

I was reading Efficient Linear Optics Quantum Computation by Knill, Laflamme, and Milburn, when I came across their expression for the Hamiltonian for a phase shifter, given as ##\textbf{n}^{(\ell)} = \textbf{a}^{(\ell)\dagger} \textbf{a}^{(\ell)}##, where ##\ell## indicates the mode. (They ignore polarization and work in the formalism of spinless bosons.) How does one get this?
I was able to get the beam splitter Hamiltonian by looking at the evolution operator (the unitary operator that takes an input photon in the x direction and spits out a superpostion of x and y photons) and subtracting out identity. But this gives a scalar Hamiltonian of ##e^{i\phi} - 1## when I think about following the same procedure for the phase shifter. Am I looking at this the wrong way? I'm completely new to quantum optics. I'm familiar with the quantization of the EM field, but that's about it.

Thanks!
 
Physics news on Phys.org
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top