Hamilton's Principle and the Principle of Virtual Work

AI Thread Summary
Hamilton's principle and the principle of virtual work yield equivalent results to Newton's laws, but understanding their derivation can be challenging. The discussion highlights the connection between virtual work and generalized forces, emphasizing that virtual displacements are arbitrary and do not imply a direct relationship between forces and generalized forces. The key realization is that while virtual displacements are independent, the points of force application are not, allowing for simplification in the equations. In static equilibrium, the sum of forces being zero leads to the conclusion that generalized forces must also be zero, confirming that virtual work is zero. This understanding bridges the gap between classical mechanics and variational principles.
SheikYerbouti
Messages
18
Reaction score
0
I understand that accepting Hamilton's principle will yield identical results as accepting Newton's laws. However, simply accepting that the integral of the difference between kinetic and potential energies is an extrema seems not intuitively obvious. The textbook that I used for my classical mechanics class (Fowles) states that Lagrange developed his mechanics through the use of the principle of virtual work. Elsewhere, I have read that the acceptance of the principle of virtual work is equivalent to the acceptance of Newton's first law. Since the whole concept of virtual displacements is somewhat counter-intuitive (at least initially), I am trying to understand its derivation from the Newton's first law. From the definition of virtual work we have:
\delta W = \sum_{i=1}^m \vec{F_i} \centerdot \delta \vec{r_i}
Where \vec{r_i} is a function of n generalized coordinates and time. Since \delta t = 0, it follows from the properties of virtual displacement that \delta \vec{r_i} = \sum_{j=1}^n \frac{\partial \vec{r_i}}{\partial q_j} \delta q_j
After substituting this into the expression for virtual work and doing some rearrangement we find that
\delta W = \sum_{j=1}^n (\sum_{i=1}^m \vec{F_i} \centerdot \frac{\partial \vec{r_i}}{\partial q_j}) \delta q_j
We define the term in parentheses to be the generalized force Q_j. The principle states that the virtual work is zero for a static system only when the generalized forces are all zero, and this readily clear here. However, I do not see how this follows from Newton's first law, which was only initially applied the forces \vec{F_i}. Since the virtual displacements in the first sum are those caused only by the corresponding force and are completely arbitrary, I don't see how this relationship between the forces must carry on to the generalized forces, which are essentially a sum of dot products of arbitrary vectors. I feel like this is where my mistake is; the virtual differential operator is not present in the partial derivative of the position with respect to a generalized coordinate. Does this mean that \frac{\partial \vec{r_1}}{\partial q_j} = ... = \frac{\partial \vec{r_m}}{\partial q_j}? Sorry for the lengthy post, I would greatly appreciate some clarification on this topic and/ or how to derive the principle of virtual work and Hamilton's variational principle from Newton's laws. (Simply showing that they yield equivalent results does not give me the deep, theoretical understanding that I would like to have.)
 
Physics news on Phys.org
That realization I had about the partial derivative was the key to solving the problem. Although I haven't figured out how to derive Hamilton's principle from the principle of virtual work, I figured that I'd post the solution in case anyone else happens to encounter my difficulties. The virtual displacements caused by each force are completely arbitrary; we cannot assume any relationship between them. However, the point upon which the forces act is not arbitrary. For most cases, the locations that the forces act upon are identical, but when they are not, the partial derivatives of the interaction locations with respect to a particular generalized coordinate are equal for each force (the locations differ by a constant translation term, at least for rigid bodies). We can thus drop the index on the position vector in the derivative and slide it out of the sum. Thus the generalized force can be re-written:
Q_j = (\sum_{i=1}^m \vec{F_i}) \centerdot \frac{\partial \vec{r}}{\partial q_j}
For a system in static equilibrium, the sum of the vector forces was initially assumed to be zero. It follows directly that each generalized force must also be zero. This implies that the virtual work on a system in static equilibrium is zero.
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top