Harmonic Motion with Electricity

AI Thread Summary
A uniform circular ring of charge creates an electric field along the z-axis, where an electron experiences a force proportional to its displacement, described by Fz = -kz. The constant k was calculated to be 2.946×10^-9 N/m. The discussion focuses on determining the frequency of small axial oscillations of the electron when released near the origin. The equation of motion for the electron is derived as z'' = -(k/m)z, indicating simple harmonic motion. Participants suggest using standard methods for solving differential equations to find the oscillation frequency.
nothilaryy
Messages
7
Reaction score
0

Homework Statement



A uniform circular ring of charge Q= 4.50 microCoulombs and radius R= 1.30 cm is located in the x-y plane, centered on the origin. A point z is located along the Z axis. If z << R then E is proportional to z. (You should verify this by taking the limit of your expression for E for z << R.) If you place an electron on the z-axis near the origin it experiences a force Fz= -kz, where k is a constant. Obtain a numerical value for k. [I did this and obtained the value 2.946×10-9 N/m which I know is correct] What is the frequency of the small axial oscillations that the electron will undergo if it is released along the z-axis near the origin?

Homework Equations



So far I have looked at:

<br /> \vec{F}_{net} = \Sigma \vec{F} = m \vec{a}<br />

KE= 1/2mv^2


The Attempt at a Solution



Ok so what haven't I thought about so far?
My first approach was to use Fnet= ma and then substitute dz^2/d^2t for a and try separation of variables and integrate it, but I didn't really know how to make that work for a position dependent force as opposed to a velocity dependent force and I really couldn't get anything useful out of that. Then I thought about trying Potential energy and setting the potential energy at that point to the kinetic energy of the point in the middle of the ring of charge. Then I would have a velocity of that point I couldn't figure out if that would tell me anything, and I don't even think I'm supposed to use potential energy because we haven't even gotten close to learning that chapter yet. I figure I was closer with the Fnet=ma approach because the problem had us find the force and there should be a reason for that, right? So maybe I'm just messing up the calculus.
 
Physics news on Phys.org
Welcome to PF!

Hi nothilaryy! Welcome to PF! :smile:

(have a mu: µ and try using the X2 tag just above the Reply box :wink:)
nothilaryy said:
… If you place an electron on the z-axis near the origin it experiences a force Fz= -kz, where k is a constant. Obtain a numerical value for k. [I did this and obtained the value 2.946×10-9 N/m which I know is correct] What is the frequency of the small axial oscillations that the electron will undergo if it is released along the z-axis near the origin?

My first approach was to use Fnet= ma and then substitute dz^2/d^2t for a and try separation of variables and integrate it, but I didn't really know how to make that work for a position dependent force as opposed to a velocity dependent force and I really couldn't get anything useful out of that …

(I'm sorry nobody replied earlier: I hope you've done it by now, but if not …)

Yes, it's z'' = -(k/m)z, which is a standard simple harmonic motion equation with general solution z = Acosωt + Bsinωt, where ω = … ? (work it out by differentiating twice! :wink:)

(if you want to solve it properly, use the trick of putting v = dz/dt, so the chain rule gives you dv/dt = v dv/dz)
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top