How Many Quantum States Can Four Bosons Have in a Harmonic Oscillator?

ghotra
Messages
53
Reaction score
0
Suppose I have 4 bosons in a one-dimensional harmonic oscillator potential and that the total energy is E_\text{tot} = 8 \hbar \omega. Recall, E_n = (n+1/2)\hbar\omega.

Question: How many quantum states exist? (assume no spin degeneracy)

After accounting for the ground state, we have 6 quanta of energy to distribute. The harmonic oscillators are indistinguishable, so we do not care about the ordering. Here is my count:

(6,0,0,0)
(5,1,0,0)
(4,2,0,0)
(4,1,1,0)
(3,3,0,0)
(3,2,1,0)
(3,1,1,1)
(2,2,2,0)
(2,2,1,1)

where, for example, (5,1,0,0) means we give one boson 5 quanta and another boson 1 quanta...the other two bosons are in the ground state.

So, there are 9 possible quantum states.

My question: What is the general formula that determines the number of quantum states?

Typical answer:

This situation is akin to have 6 balls and 4-1 walls, and then asking how many ways can you permute those objects. To which, the answer is:

<br /> \binom{6+(4-1)}{4-1} = \frac{[6+(4-1)]!}{(4-1)!6!} = 84<br />

and is _clearly_ wrong. This formula comes from the question of asking how many ways can you put N indistinguishable bosons into d distinguishable degenerate energy levels. Essentially, it cares about the order. That is,

(6,0,0,0) 4!/3! permutations
(5,1,0,0) 4!/2! permutations
(4,2,0,0) 4!/2! permutations
(4,1,1,0) 4!/2! permutations
(3,3,0,0) 4!/2!/2! permutations
(3,2,1,0) 4! permutations
(3,1,1,1) 4!/3! permutations
(2,2,2,0) 4!/3! permutations
(2,2,1,1) 4!/2!/2! permutations

(yes that adds to 84)

For this problem, we are asking: How many ways can you put 6 indistinguishable quanta into 4 indistinguishable bosons? So the questions are not the same and the above formula does not apply. Here is my question once again:

How many ways can we divide M indistinquishable quanta into N indistinguishable bosons?

Notice, if N >= M, then the answer is given by p(M), the partition function of M.
http://en.wikipedia.org/wiki/Integer_partition
 
Last edited:
Physics news on Phys.org
Anyone? I know there are smart enough people here.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top