Heat capacity from dispersion relation

  • Thread starter Thread starter dark_matter_is_neat
  • Start date Start date
  • Tags Tags
    Statistical mechanics
dark_matter_is_neat
Messages
34
Reaction score
1
Homework Statement
At low temperatures, a 2-d d-wave superconductor can be described as a gas of non-interacting fermions that follow dispersion relation ##E(k) = \sqrt{a^{2}k_{x}^{2}+b^{2}k_{y}^{2}}## where a and b are positive constants. The fermion number is not conserved. Determine how the specific heat of the system depends on temperature.
Relevant Equations
##U = \int_{0}^{\infty} D(E)*E*\frac{1}{e^{\frac{E}{k_{B}T}} + 1} dE##
##C = \frac{dU}{dT}##
For me the part of the problem that is giving me issues is obtaining the density of states, since typically how you would calculate D(E) as D(E) = ##\frac{A}{2 \pi} *k*\frac{dk}{dE}## but this shouldn't work since this assumes angular symmetry in k space which this dispersion relationship doesn't have. This dispersion relation essentially makes an ellipse in k space so the density of states should be ##D(E) = \frac{A}{4 \pi^{2}} * \frac{dk_{x}dk_{y}}{dE}## which I'm not really sure how to calculate. Once I get the density of states it should be pretty trivial to get the temperature dependence of the heat capacity, since after appropriate usage of u substitution the expression for U will work out to just be a constant times some power of T.
 
Physics news on Phys.org
Since the problem is really just asking about the temperature dependence of the heat capacity I don't really need to consider the pre-factors, So rewriting ##k_{x}## and ##k_{y}## in terms of k as if in polar coordinates, ##E = k\sqrt{a^{2}cos^{2}(\phi) + b^{2}sin^{2}(\phi)}##. So E is proportional to k and thus ##\frac{dk}{dE}## is just some constant and won't add any temperature dependence. From the k-space area element, you get k times some constant and since E is proportional to k, you get E times some constant.

So in the integrand for U you get a factor of ##E^{2}##, so when substituting the variable of integration for ##\frac{E}{k_{B}T}##, you get a factor of ##T^{2}##. After this substitution the integral will just be a constant, so U will just be some constant times ##T^{2}##.

##C = \frac{dU}{dT}##, so ##C = \frac{d}{dT}(constant*T^{2})##, so C is proportional to T.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top