Heat equation problem so confusing

Click For Summary
The discussion revolves around solving a heat equation problem involving Fourier series, specifically finding the coefficients Bn for the function f(x) = sin(2πx) - (1/π²)sin(πx). Participants express confusion over the integration process required to derive Bn, particularly when dealing with sine functions and the presence of n in the integrals. Clarifications are provided about the need for a summation sign in the equation and the distinction between different B values for specific n values. The conversation highlights the importance of understanding Fourier series and suggests reviewing foundational material to grasp the concepts better. Ultimately, the participants are encouraged to write out their solutions clearly, focusing on the non-zero terms rather than an infinite summation.
JI567
Messages
173
Reaction score
0

Homework Statement


The problem is f(x) = sin2πx - (1/πsquare)*sinπx

and its given Bn sin (nπx) = f(x)

Question is find Bn.

Homework Equations



Bn = 2/L ∫ (sin2πx - (1/πsquare)*sinπx) * sin(nπx/L) where L is 1

The Attempt at a Solution


I did
[/B]
∫ sin2πx * sin (nπx) - (1/πsquare)*sin square πx
then I tried changing it to cos but it doesn't make sense, for the first term ∫sin2πx * sin (nπx)
∫sin2πx * sin (nπx) = -1/2 ∫cos(2π+nπ)-cos(2π-nπ)

But how do i actually integrate the above with the n in it i am so confused...I know cosnπ = (-1)^n but I can only use that after final integration and even if I finally somehow manage to integrate it, it will be changed to sinnπ. Please can anyone help!
. Is there any simple way to do this?
 
Physics news on Phys.org
JI567 said:
The problem is f(x) = sin2πx - (1/πsquare)*sinπx

and its given Bn sin (nπx) = f(x)
That doesn't make sense. Please correct the problem statement.
 
Did you mean to have a summation sign in front of the Bnsin(nπx)?
 
JI567 said:

Homework Statement


The problem is f(x) = sin2πx - (1/πsquare)*sinπx

and its given Bn sin (nπx) = f(x)

Question is find Bn.

Homework Equations



Bn = 2/L ∫ (sin2πx - (1/πsquare)*sinπx) * sin(nπx/L) where L is 1

The Attempt at a Solution


I did
[/B]
∫ sin2πx * sin (nπx) - (1/πsquare)*sin square πx
then I tried changing it to cos but it doesn't make sense, for the first term ∫sin2πx * sin (nπx)
∫sin2πx * sin (nπx) = -1/2 ∫cos(2π+nπ)-cos(2π-nπ)

But how do i actually integrate the above with the n in it i am so confused...I know cosnπ = (-1)^n but I can only use that after final integration and even if I finally somehow manage to integrate it, it will be changed to sinnπ. Please can anyone help!
. Is there any simple way to do this?

Your question seems to be asking for the ##B_n## in
\sum_{n=1}^{\infty} B_n \sin(n \pi x) =\sin(2 \pi x) - \frac{1}{\pi^2} \sin(\pi x)
Is that really your question?
 
Ray Vickson said:
Your question seems to be asking for the ##B_n## in
\sum_{n=1}^{\infty} B_n \sin(n \pi x) =\sin(2 \pi x) - \frac{1}{\pi^2} \sin(\pi x)
Is that really your question?

Yesss! I didn't know how to insert the symbols like that, but yes that's exactly my question. Is there any simple way to find Bn? Many thanks
 
JI567 said:
Yesss! I didn't know how to insert the symbols like that, but yes that's exactly my question. Is there any simple way to find Bn? Many thanks
Just write out the first two terms of the summation on the left hand side and see what you get.

Chet
 
Chestermiller said:
Just write out the first two terms of the summation on the left hand side and see what you get.

Chet

Sorry how do i do that? is it just Bn Sin(πx) + Bn sin (2πx)

I just used n =1 and n =2. Is that correct?
 
JI567 said:
Sorry how do i do that? is it just Bn Sin(πx) + Bn sin (2πx)

I just used n =1 and n =2. Is that correct?
No. It's B1sin(πx)+B2sin(2πx).

Now compare that with the right hand side of your equation.

Chet
 
Chestermiller said:
No. It's B1sin(πx)+B2sin(2πx).

Now compare that with the right hand side of your equation.

Chet

So B1 = -1/π square and B2 = 0, right? So do I just take Bn as -1/π square then? Isn't Bn a general constant for all the B values in the summation? I am just confused how two different B values can have the similar Bn value.
 
  • #10
Sorry I meant B2 = 1
 
  • #11
JI567 said:
So do I just take Bn as -1/π square then?
No. You take B1=-1/π2, B2 = 1, B3...B = 0
Isn't Bn a general constant for all the B values in the summation? I am just confused how two different B values can have the similar Bn value.
I don't understand this question.

Chet
 
  • #12
Chestermiller said:
No. You take B1=-1/π2, B2 = 1, B3...B = 0

I don't understand this question.

Chet

You know heat equation solution is in a format of T(x,t) = Bn*sin(nπx)*e^-(nsquare*pi square* t) - T(x). So you are saying I will have one T(x,t) equation with B1 and another T(x,t) equation with B2? Do I add up both the equations together to get a final T(x,t) solution.
 
  • #13
JI567 said:
You know heat equation solution is in a format of T(x,t) = Bn*sin(nπx)*e^-(nsquare*pi square* t) - T(x). So you are saying I will have one T(x,t) equation with B1 and another T(x,t) equation with B2? Do I add up both the equations together to get a final T(x,t) solution.
There should be a summation sign in your equation right in front of the Bn.

You seem very confused. This is not the proper venue to teach you the entire solution approach over again. You need to go back and review your notes and text.

Chet
 
  • #14
O
Chestermiller said:
There should be a summation sign in your equation right in front of the Bn.

You seem very confused. This is not the proper venue to teach you the entire solution approach over again. You need to go back and review your notes and text.

Chet

No I am just confused which format should I present my answer. Do I just put the summation sign infront of Bn and then write when n = 1 bn = -1/pi square. And when n = 2 Bn= 1.
Is that how you present the final answer. Please confirm
 
  • #15
JI567 said:
You know heat equation solution is in a format of T(x,t) = Bn*sin(nπx)*e^-(nsquare*pi square* t) - T(x). So you are saying I will have one T(x,t) equation with B1 and another T(x,t) equation with B2? Do I add up both the equations together to get a final T(x,t) solution.

When you write "nsquare" do you mean n^2? By pi square do you mean pi^2? Where is the summation in front of your nth term? (In text you can just write sum_{n} B_b... if you don't want to try using LaTeX and you don't want to use fancy symbols.
 
  • #16
Yes exactly that's what I mean. And yes there will be the summation sign, apologies. So is that it then? I just write T(x,t) = sum_{n}B_n *sin(nπx)*e^-(n^2*pi^2* t) - T(x). Then I just mention when n =1 and 2 there will be corresponding B values. Will that be the final answer?
 
  • #17
JI567 said:
Yes exactly that's what I mean. And yes there will be the summation sign, apologies. So is that it then? I just write T(x,t) = sum_{n}B_n *sin(nπx)*e^-(n^2*pi^2* t) - T(x). Then I just mention when n =1 and 2 there will be corresponding B values. Will that be the final answer?

Why bother with the summation? You just have two terms, so just writing them out in detail answers the question.
 
  • #18
To the OP: Setting your heat equation problem aside, what you need to understand is that some FS are finite. For example if you want to expand ##f(x) = 5\sin(3x) + 3\sin(4x)## in a half range sine expansion on ##(0,\pi)## you are wanting to write$$
5\sin(3x) + 3\sin(4x) = \sum_{n=1}^\infty b_n \sin(nx) = b_1\sin(x)+b_2\sin(2x) + b_3\sin(3x)+b_4\sin(4x)+...$$As you noticed in your original post, solving for the ##b_n## can be very tedious and requires working the integrals for ##b_3## and ##b_4## separately. Actually, I don't think you got that far in those calculations. But looking at the above equation you can see by inspection that taking ##b_3=5,~b_4=3## and all the other ##b_n=0## makes the two sides identical. The FS for this function has finitely many nonzero terms, and in fact, the function itself is its own FS.

Similarly, in your solution, you will have only a couple of nonzero terms in your FS and consequently won't need any infinite sum in your answer. Just write out the nonzero terms.
 
  • #19
LCKurtz said:
To the OP: Setting your heat equation problem aside, what you need to understand is that some FS are finite. For example if you want to expand ##f(x) = 5\sin(3x) + 3\sin(4x)## in a half range sine expansion on ##(0,\pi)## you are wanting to write$$
5\sin(3x) + 3\sin(4x) = \sum_{n=1}^\infty b_n \sin(nx) = b_1\sin(x)+b_2\sin(2x) + b_3\sin(3x)+b_4\sin(4x)+...$$As you noticed in your original post, solving for the ##b_n## can be very tedious and requires working the integrals for ##b_3## and ##b_4## separately. Actually, I don't think you got that far in those calculations. But looking at the above equation you can see by inspection that taking ##b_3=5,~b_4=3## and all the other ##b_n=0## makes the two sides identical. The FS for this function has finitely many nonzero terms, and in fact, the function itself is its own FS.

Similarly, in your solution, you will have only a couple of nonzero terms in your FS and consequently won't need any infinite sum in your answer. Just write out the nonzero terms.

Alright so my solution will be like this :

T(x,t) = b1sin(πx)*e^-(n^2*pi^2* t)+b2sin(2πx)*e^-(n^2*pi^2* t) - T(x).

Is that correct for the final answer?
 
  • #20
JI567 said:
Alright so my solution will be like this :

T(x,t) = b1sin(πx)*e^-(n^2*pi^2* t)+b2sin(2πx)*e^-(n^2*pi^2* t) - T(x).

Is that correct for the final answer?

No. You have undefined ##n##'s on the right side and undefined ##b_1## and ##b_2## on the left.
 
  • #21
LCKurtz said:
No. You have undefined ##n##'s on the right side and undefined ##b_1## and ##b_2## on the left.

The n's are going to be 1 and 2 respectively. B1 = -1/pie square and b2 = 1. Is that correct now?
 
  • #22
If you wrote that out I think it would finally make sense. Is it correct? Who knows? You never wrote out the heat equation or showed your work getting the solution.
 
  • #23
Ray Vickson said:
∑n=1∞Bnsin(nπx)=sin(2πx)−1π2sin(πx)​
\sum_{n=1}^{\infty} B_n \sin(n \pi x) =\sin(2 \pi x) - \frac{1}{\pi^2} \sin(\pi x)
Is that really your question?

How would I go about finding Bn if the right hand side was instead cos(2πx) - 1/π^2 *(sin(πx)? Can you please tell me. Thanks.
 
  • #24
Ray Vickson said:
Your question seems to be asking for the ##B_n## in
\sum_{n=1}^{\infty} B_n \sin(n \pi x) =\sin(2 \pi x) - \frac{1}{\pi^2} \sin(\pi x)
Is that really your question?

How would I go about finding Bn if the right hand side was instead cos(2πx) - 1/π^2 *(sin(πx)? Can you please tell me. Thanks.
 
  • #25
JI567 said:
How would I go about finding Bn if the right hand side was instead cos(2πx) - 1/π^2 *(sin(πx)? Can you please tell me. Thanks.

You wouldn't. The formula ##f(x) \equiv \sum_{n} B_n \sin(n \pi x)## describes an odd function of ##x##---that is--a function giving ##f(-x) = - f(x)##. Your new function does not have this property, so cannot be expressed in the form you want.
 
  • #26
Ray Vickson said:
You wouldn't. The formula ##f(x) \equiv \sum_{n} B_n \sin(n \pi x)## describes an odd function of ##x##---that is--a function giving ##f(-x) = - f(x)##. Your new function does not have this property, so cannot be expressed in the form you want.

Okay fine. So it will be Summation of An cos (nπx) = cos(2πx) - 1/π^2 *(sin(πx)

Now how will I solve this...Do I really need to integrate or I can compare sides and find coefficient. Please tell me...
 
  • #27
JI567 said:
Okay fine. So it will be Summation of An cos (nπx) = cos(2πx) - 1/π^2 *(sin(πx)

Now how will I solve this...Do I really need to integrate or I can compare sides and find coefficient. Please tell me...
JI567 said:
Okay fine. So it will be Summation of An cos (nπx) = cos(2πx) - 1/π^2 *(sin(πx)

Now how will I solve this...Do I really need to integrate or I can compare sides and find coefficient. Please tell me...

What you wrote is incorrect: the summation will not be ##\sum_n A_n \cos(n \pi x)## and not be ##\sum_n B_n \sin(n \pi x)##, but both.

You really do need to do some reading on these issues; look up Fourier series, and make sure you understand the material before trying to use it. Make sure you go through some of the illustrative examples that will be present in any textbook that treats the subject.
 
  • Like
Likes Chestermiller
  • #28
Ray Vickson said:
What you wrote is incorrect: the summation will not be ##\sum_n A_n \cos(n \pi x)## and not be ##\sum_n B_n \sin(n \pi x)##, but both.

You really do need to do some reading on these issues; look up Fourier series, and make sure you understand the material before trying to use it. Make sure you go through some of the illustrative examples that will be present in any textbook that treats the subject.

No offence, but its easy to advice then actually do. I have tried it enough times already, all the textbook examples have simple initial conditions, I haven't found a single example where it has trigonometric terms in the question and also as initial condition, so its not so easy to understand, specially when I am new to this entire topic. So maybe you can link me some solved examples similar to this question instead of just lecturing if you really want me to do some reading.
 
  • #29
JI567 said:
No offence, but its easy to advice then actually do. I have tried it enough times already, all the textbook examples have simple initial conditions, I haven't found a single example where it has trigonometric terms in the question and also as initial condition, so its not so easy to understand, specially when I am new to this entire topic. So maybe you can link me some solved examples similar to this question instead of just lecturing if you really want me to do some reading.

The idea of examples is that they illustrate a method; it is then up to you to apply the method in situations that are NOT covered in the textbook.

You can find relevant articles yourself; just Google "Fourier Series", and you will find dozens of web pages at various levels of sophistication. YOU choose the ones you want. I have no way of knowing which of the many articles out there are the ones that will "speak to you".
 
Last edited:
  • #30
I tend to agree with Ray. But, maybe you can give us an example of a specific problem you are struggling with (from start to finish, not just the final equation), and we can help you through it. I don't think that the equation you presented in the initial post of this thread is a correct relationship for any heat equation problem that I have ever seen (and I've seen lots of them).

Chet
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K