Heat Kernel at t=0: Dirac Delta Intuition

Click For Summary

Homework Help Overview

The discussion revolves around the heat kernel, specifically demonstrating that k(x,0) equals the Dirac Delta function δ(x). Participants are exploring the properties of the heat kernel and its relation to the Dirac Delta function in the context of distribution theory.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are attempting to understand the relationship between the heat kernel and the Dirac Delta function, questioning the necessity of showing that the limit of a convolution integral approaches a specific function as t approaches zero.

Discussion Status

There is an ongoing exploration of the properties of the heat kernel and its connection to the Dirac Delta function. Some participants are seeking clarification on the concept of convolution and its implications in this context, indicating a productive direction in the discussion.

Contextual Notes

Participants express confusion regarding the derivation of certain expressions and the foundational concepts of convolution, highlighting a need for deeper understanding of the definitions involved in the delta distribution.

i_hate_math
Messages
150
Reaction score
2

Homework Statement


Show that k(x,0)=δ(x).
Where k(x,t) is the heat kernel and δ(x) is the Dirac Delta at x=0.

Homework Equations


k(x,t) = (1/Sqrt[4*π*D*t])*Exp[-x^2/(4*D*t)]

The Attempt at a Solution


I am just clueless from the beginning. I am guessing this is got to do with convolution?
I know ∫ k(x,t) dx = 1, {x, -∞, ∞} and the same goes for Dirac Delta.
 
Physics news on Phys.org
i_hate_math said:
I know ∫ k(x,t) dx = 1, {x, -∞, ∞} and the same goes for Dirac Delta.
This is not sufficient, there are many different functions that integrate to one, you need to show that
$$
\lim_{t\to 0^+} \int k(a-x,t) f(x) dx = f(a),
$$
which is the defining property of the delta distribution.
 
  • Like
Likes   Reactions: i_hate_math
Orodruin said:
This is not sufficient, there are many different functions that integrate to one, you need to show that
$$
\lim_{t\to 0^+} \int k(a-x,t) f(x) dx = f(a),
$$
which is the defining property of the delta distribution.
Thanks for ur reply! I'm still a bit confused as to how this expression is obtained? I'm not too familiar with convolution, would u care to explain why the convolution is the same as f(a) in the limit t->0
 
i_hate_math said:
Thanks for ur reply! I'm still a bit confused as to how this expression is obtained? I'm not too familiar with convolution, would u care to explain why the convolution is the same as f(a) in the limit t->0
This is the definition of the delta distribution so it is what you need to show. If you show that it is true you will have shown that ##k(x,0) = \delta(x)##.
 
  • Like
Likes   Reactions: Douglas Sunday

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K