Heat Kernel at t=0: Dirac Delta Intuition

Click For Summary
The discussion focuses on proving that the heat kernel k(x,t) approaches the Dirac delta function δ(x) as t approaches zero. Participants emphasize that simply showing both functions integrate to one is insufficient; instead, the defining property of the delta distribution must be demonstrated. This involves proving that the limit of the convolution of k(a-x,t) with a test function f(x) equals f(a) as t approaches zero. Clarification is sought regarding the convolution process and its relation to the delta function. Successfully establishing this limit will confirm that k(x,0) equals δ(x).
i_hate_math
Messages
150
Reaction score
2

Homework Statement


Show that k(x,0)=δ(x).
Where k(x,t) is the heat kernel and δ(x) is the Dirac Delta at x=0.

Homework Equations


k(x,t) = (1/Sqrt[4*π*D*t])*Exp[-x^2/(4*D*t)]

The Attempt at a Solution


I am just clueless from the beginning. I am guessing this is got to do with convolution?
I know ∫ k(x,t) dx = 1, {x, -∞, ∞} and the same goes for Dirac Delta.
 
Physics news on Phys.org
i_hate_math said:
I know ∫ k(x,t) dx = 1, {x, -∞, ∞} and the same goes for Dirac Delta.
This is not sufficient, there are many different functions that integrate to one, you need to show that
$$
\lim_{t\to 0^+} \int k(a-x,t) f(x) dx = f(a),
$$
which is the defining property of the delta distribution.
 
  • Like
Likes i_hate_math
Orodruin said:
This is not sufficient, there are many different functions that integrate to one, you need to show that
$$
\lim_{t\to 0^+} \int k(a-x,t) f(x) dx = f(a),
$$
which is the defining property of the delta distribution.
Thanks for ur reply! I'm still a bit confused as to how this expression is obtained? I'm not too familiar with convolution, would u care to explain why the convolution is the same as f(a) in the limit t->0
 
i_hate_math said:
Thanks for ur reply! I'm still a bit confused as to how this expression is obtained? I'm not too familiar with convolution, would u care to explain why the convolution is the same as f(a) in the limit t->0
This is the definition of the delta distribution so it is what you need to show. If you show that it is true you will have shown that ##k(x,0) = \delta(x)##.
 
  • Like
Likes Douglas Sunday
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
4K
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 22 ·
Replies
22
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K