alejandrito29
- 148
- 0
Hello
The problem is
find the value of \lambda for \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ < 1, where
a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ con \lambda >0
I tried to do:
\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}
=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!}
\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7...(2n+1)}{5 \cdot 7 ...(2n+1) \cdot (2n+3)}
= ( \lambda (n+1))^2\frac{3}{(2n+3)}
but the Answer is \lambda \in {0,2}
The problem is
find the value of \lambda for \lim_{n \to \infty} \frac{a_{n+1}}{a_n} \nonumber\ < 1, where
a_n= \frac{(\lambda^nn!)^2}{(2n+1)!} \nonumber\ con \lambda >0
I tried to do:
\frac{a_{n+1}}{a_n}=\frac{(\lambda^{n+1}(n+1)!)^2}{(2n+3)!}\cdot \frac{(2n+1)!}{(\lambda^nn!)^2}
=( \frac{\lambda^{n+1}}{\lambda^n}\frac{(n+1)!}{n!})^2\frac{(2n+1)!}{(2n+3)!}
\frac{(2n+1)!}{(2n+3)!}= \frac{3 \cdot 5 \cdot 7...(2n+1)}{5 \cdot 7 ...(2n+1) \cdot (2n+3)}
= ( \lambda (n+1))^2\frac{3}{(2n+3)}
but the Answer is \lambda \in {0,2}