HELP First Order DE using Substitution Method

danerape
Messages
31
Reaction score
0
I feel as if I have made the correct substitution, what am I missing? See Attachment.

Thanks,

Dane
 

Attachments

Physics news on Phys.org
Any ideas at all?
 
danerape said:
Any ideas at all?

v=y/x looks like a better bet to me. If you divide the numerator and denominator of the RHS by x you can express it completely in terms of v. Should be easy to separate.
 
Thanks,

Dane
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top