AdrianZ
- 318
- 0
Homework Statement
yy''-y'^2 = y^2lny
The Attempt at a Solution
well, since the equation is of the form f(y,y',y'')=0 I turn it into the form f(y,p,p dp/dy)=0.
After those substitutions are made, we'll have the following equation:
yp (\frac{dp}{dy})-p^2-y^2 lny=0
which is a Bernoulli equation that can be solved easily. the solution of this ODE is:
p^2=y^2lny+cy^2
Here's where I'm stuck, because If I substitute y'=p again I'll have an ODE that I don't know how to solve it, I guess the general solution will be parametric, but I don't know how to proceed from this step.
Last edited: