IntroAnalysis
- 58
- 0
Homework Statement
Ai and Bi are indexed families of sets. Prove that Ui (Ai \bigcap Bi) \subseteq (UiAi) \bigcap (UiBi).
Homework Equations
The Attempt at a Solution
Suppose arbitrary x. Let x \in
{x l \foralli\inI(x\inAi\bigcapBi)
This means x \in{x l \foralli\inI(x\inAi)\wedge\foralli\inI(x\inBi).
Homework Statement
This means x \in\neg\existsi\inI(x\notinAi)\wedge\neg\existsi\inI(x\in\notinBi)}
Which is equivalent to: x\in{x l \existsi\inI(x\inAi)\wedge\existsi\inI(x\inBi)}
Therefore, x\in{x l (\bigcupi\inIAi)\bigcap(Ui\inIBi)}
Therefore, is equiv. to Ui\inI(Ai\bigcapBi), then x\in(Ui\inIAi)\bigcap(Ii\inIBi).
Therefore Ui\inI(Ai\bigcapBi)\subseteq(Ui\inIAi)\bigcap(Ii\inIBi).