Help me solving this differential equation

ahm_11
Messages
6
Reaction score
0
[/yy] + [/zz] - ∂p/∂x = 0;

∂u/∂x = 0;

∂p/∂x = constant


i tried separation of variables ...
 
Physics news on Phys.org
μ[uyy + uzz] - ∂p/∂x = 0 ... (1)

∂u/∂x = 0 ;

now i assumed u(y,z) = Y(y)Z(z)

so (1) becomes ... μ[ZYyy + YZzz] - ∂p/∂x = 0

hence (1/Y)*Yyy + (1/Z)*Zzz = (R/YZ) = -λ2
where, R = (1/μ)*∂p/∂x

now Yyy + λ2Y = 0 ... can be solved easily but what about the remaining part ... i couldn't solve it due to the constant
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top