Help understanding a vibrating string question

AI Thread Summary
The discussion revolves around clarifying the professor's request to demonstrate why the displacements y(x,t) must satisfy a specific boundary value problem related to vibrating strings. It is suggested that this involves deriving the wave equation, as indicated by the equation utt = c²uxx. The responder interprets the task as developing the equation of motion for the system and establishing the relevant boundary conditions. Additionally, it is emphasized that the constant c should be expressed in terms of the provided data rather than simply stated. Understanding these elements is crucial for solving the problem effectively.
John004
Messages
37
Reaction score
0

Homework Statement


So I don't really understand what the professor means by "show why the displacements y(x,t) should satisfy this boundary value problem" in problem 1. Doesn't that basically boil down to deriving the wave equation? At least in problem 2 he says what he wants us to show.

Homework Equations


utt = c2uxx

The Attempt at a Solution


The problem set is in the attachment
 

Attachments

  • PDE HW 1.png
    PDE HW 1.png
    103.2 KB · Views: 499
Physics news on Phys.org
I would interpret that problem to mean
1) develop the equation of motion for the system, ending up with the wave equation
2) show that, for this situation, the boundary conditions are those suggested in the problem statement.
In the process, you will need to show how c is related to the given information, so don't just write "c" but put it in terms of the given data.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top