Help Understanding Integral with Partial Fractions

Airsteve0
Messages
80
Reaction score
0
Hey everyone, I was wondering if someone could help me understand what exactly is happening with a certain integral I am working with, which is as follows:

∫2/(u^2-1)du

My steps are as follows (I used partial fractions):

∫(1/(u-1) - 1/(u+1))du = ∫1/(u-1)du - ∫1/(u+1) = ln[(u-1)/(u+1)]

However, here is where my issue arrises; when checking my answer with Mathematica, if I input the very first line above I get:

ln[(1-u)/(1+u)]

Could someone help me understand if it is my method that is flawed or maybe the way I am inputting it into the program when I check my answer. Any assistance is greatly appreciated, thanks!
 
Physics news on Phys.org
ln[(u-1)/(u+1)] = ln[(-1 +u)/(1+u)] = ln[(-1)(1-u)/(1+u)] =ln(-1) + ln[(1-u)/(1+u)] .

Since the integral is indefinite, there must be a constant of integration. The ln(-1) can be incorporated in this constant.

So if you add a constant to your solution, your answer and that given by Matematica will be equivalent.
 
Both answers are correct as they differ by a constant.
 
o ok so the constant can be complex in general then?
 
Yes the constant would be complex. To avoid dealing with this often absolute values are used since otherwise the function would be undefined. In fact different constants are needed in different ranges.
 
thank you very much for the clarification and assistance!
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
2
Views
2K
Replies
2
Views
3K
Replies
6
Views
1K
Replies
16
Views
2K
Replies
1
Views
3K
Replies
8
Views
2K
Replies
3
Views
3K
Back
Top