Help understanding the adjoint equation

  • Context: MHB 
  • Thread starter Thread starter nacho-man
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around understanding the adjoint equation in the context of differential equations. Participants are trying to clarify the logical reasoning behind the connections made in their lecturer's notes, particularly regarding the conditions for an equation to be considered adjoint and the expansion of certain expressions using the product rule.

Discussion Character

  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • One participant expresses confusion about the logical reasoning linking two equations and questions whether a previous rule for checking adjointness was applied.
  • Another participant notes that checking if an operator is adjoint does not determine another operator, emphasizing the necessity of an inner product for adjointness.
  • A participant seeks clarification on the term "inner product" and requests help in understanding how one equation expands into another as shown in the lecturer's notes.
  • A later reply provides a detailed expansion of expressions using the product rule, breaking down the differentiation of terms and leading to a reformulation of the equation in question.

Areas of Agreement / Disagreement

Participants do not appear to reach a consensus on the understanding of the adjoint equation or the role of the inner product, indicating that multiple views and uncertainties remain in the discussion.

Contextual Notes

There are unresolved aspects regarding the definitions and assumptions related to the inner product and the conditions under which the adjointness is being evaluated. The discussion also reflects varying levels of understanding of the mathematical concepts involved.

nacho-man
Messages
166
Reaction score
0
So I have attached a screenshot of my lecturer's notes,
I can't quite understand the logical reasoning behind the link he's made between the two equations.

Previously he'd given us the fact that to check if an equation was adjoint,
you check if $ p_1' = p_0'' + p_2 $

for
$L = p_0u'' + p_1u' + p2u = r$

I am not sure if he has used this previous rule to here, but certainly I am a little dumbfounded.
I would appreciate any help!

Thanks
 

Attachments

  • Untitled.jpg
    Untitled.jpg
    6.3 KB · Views: 98
Physics news on Phys.org
nacho said:
So I have attached a screenshot of my lecturer's notes,
I can't quite understand the logical reasoning behind the link he's made between the two equations.

Previously he'd given us the fact that to check if an equation was adjoint,
you check if $ p_1' = p_0'' + p_2 $

for
$L = p_0u'' + p_1u' + p2u = r$

I am not sure if he has used this previous rule to here, but certainly I am a little dumbfounded.
I would appreciate any help!

Thanks


Hi nacho,

Your professor may have checked that $L$ is adjoint, but that does not determine $M$. To have an adjoint, there must be an inner product defined. What was the inner product that he used?
 
Euge said:
Hi nacho,

Your professor may have checked that $L$ is adjoint, but that does not determine $M$. To have an adjoint, there must be an inner product defined. What was the inner product that he used?

Sorry, I am not entirely sure what you mean by inner product! :(

I hope my question was not vague, but I essentially want to know how the
first line of the equation expands to the second line in the screenshot I provided in the original post.

Thanks!
 
Ok, now I understand your question.

First, let's expand $(vp_1)'$. By the product rule, we have

$\displaystyle (vp_1)' = v' p_1 + v (p_1)'$.

Now for $(vp_0)''$. Like with $(vp_1)'$,

$\displaystyle (vp_0)' = v' p_0 + v (p_0)'$.

Differentiate both sides to get

$\displaystyle (vp_0)'' = (v' p_0)' + (v(p_0)')'$.

By the product rule we obtain

$\displaystyle (v' p_0)' = v'' p_0 + v' (p_0)'$

and

$\displaystyle (v (p_0)')' = v' (p_0)' + v (p_0)''$.

Adding the two results,

$\displaystyle (vp_0)'' = v'' p_0 + 2 v' (p_0)' + v (p_0)''$.

Now we can express

$M[v] = (v'' p_0 + 2v' (p_0)' + v (p_0)'') - (v' p_1 + v (p_1)') + vp_2$

$\displaystyle = p_0 v'' + [-p_1 + 2(p_0)'] v' + [p_2 - p_1 + (p_0)''] v$.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K