MHB Help understanding the adjoint equation

  • Thread starter Thread starter nacho-man
  • Start date Start date
Click For Summary
The discussion focuses on understanding the connection between two equations related to adjoint operators in differential equations. A participant expresses confusion over the logical reasoning behind the link made by their lecturer, specifically regarding the conditions for an equation to be adjoint. Another contributor clarifies that the definition of an adjoint requires an inner product and suggests that the professor's verification of the adjoint property for one equation does not necessarily apply to another. The conversation then delves into the mathematical expansion of the equations using the product rule, providing detailed steps to illustrate how one equation transforms into another. Ultimately, the discussion emphasizes the importance of understanding the underlying principles of adjoint equations and their derivations.
nacho-man
Messages
166
Reaction score
0
So I have attached a screenshot of my lecturer's notes,
I can't quite understand the logical reasoning behind the link he's made between the two equations.

Previously he'd given us the fact that to check if an equation was adjoint,
you check if $ p_1' = p_0'' + p_2 $

for
$L = p_0u'' + p_1u' + p2u = r$

I am not sure if he has used this previous rule to here, but certainly I am a little dumbfounded.
I would appreciate any help!

Thanks
 

Attachments

  • Untitled.jpg
    Untitled.jpg
    6.3 KB · Views: 96
Physics news on Phys.org
nacho said:
So I have attached a screenshot of my lecturer's notes,
I can't quite understand the logical reasoning behind the link he's made between the two equations.

Previously he'd given us the fact that to check if an equation was adjoint,
you check if $ p_1' = p_0'' + p_2 $

for
$L = p_0u'' + p_1u' + p2u = r$

I am not sure if he has used this previous rule to here, but certainly I am a little dumbfounded.
I would appreciate any help!

Thanks


Hi nacho,

Your professor may have checked that $L$ is adjoint, but that does not determine $M$. To have an adjoint, there must be an inner product defined. What was the inner product that he used?
 
Euge said:
Hi nacho,

Your professor may have checked that $L$ is adjoint, but that does not determine $M$. To have an adjoint, there must be an inner product defined. What was the inner product that he used?

Sorry, I am not entirely sure what you mean by inner product! :(

I hope my question was not vague, but I essentially want to know how the
first line of the equation expands to the second line in the screenshot I provided in the original post.

Thanks!
 
Ok, now I understand your question.

First, let's expand $(vp_1)'$. By the product rule, we have

$\displaystyle (vp_1)' = v' p_1 + v (p_1)'$.

Now for $(vp_0)''$. Like with $(vp_1)'$,

$\displaystyle (vp_0)' = v' p_0 + v (p_0)'$.

Differentiate both sides to get

$\displaystyle (vp_0)'' = (v' p_0)' + (v(p_0)')'$.

By the product rule we obtain

$\displaystyle (v' p_0)' = v'' p_0 + v' (p_0)'$

and

$\displaystyle (v (p_0)')' = v' (p_0)' + v (p_0)''$.

Adding the two results,

$\displaystyle (vp_0)'' = v'' p_0 + 2 v' (p_0)' + v (p_0)''$.

Now we can express

$M[v] = (v'' p_0 + 2v' (p_0)' + v (p_0)'') - (v' p_1 + v (p_1)') + vp_2$

$\displaystyle = p_0 v'' + [-p_1 + 2(p_0)'] v' + [p_2 - p_1 + (p_0)''] v$.
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
854
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
3K