Help with bounds for integration

Click For Summary
SUMMARY

The discussion focuses on changing the bounds for the double integral of Sin(x^2) with x ranging from 1 to 2y and y from 0 to 1. The user graphed the bounds and attempted to convert the equations, specifically using 2y=x to derive y=1/2x. Despite using Wolfram for verification, the user encountered discrepancies in their results, obtaining -.0200198 instead of the expected -.0116111. Clarification was sought regarding the region of integration, which was identified as a triangle bounded by the x-axis, the line x=1, and the line y=(1/2)x.

PREREQUISITES
  • Understanding of double integrals and their bounds
  • Familiarity with the function Sin(x^2)
  • Graphing skills for visualizing integration regions
  • Proficiency in using computational tools like Wolfram Alpha
NEXT STEPS
  • Study the concept of changing the order of integration in double integrals
  • Learn about the geometric interpretation of integration bounds
  • Explore the use of Wolfram Alpha for solving integrals
  • Investigate the properties of the Sin function in integration contexts
USEFUL FOR

Students and educators in calculus, particularly those working on double integrals and integration bounds, as well as anyone seeking to improve their computational skills in mathematical analysis.

Quatros
Messages
17
Reaction score
1

Homework Statement



I'm trying to change the bounds for this integral
Sin(x^2)dxdy

With x going from 1 to 2y, y going from 0 to 1
(I already know the integration for sin(x^2)

The Attempt at a Solution



I converted 2y=x to 1/2x=y and graphed all the bounds.

2H53WHoyRtm4W0h7LfqX3Q.png

haj14p

I went with 1,2 for my xbounds, and the 1/2x = y to to 1, I'm getting answer close to the correct answer, but no dice.
 

Attachments

  • 2H53WHoyRtm4W0h7LfqX3Q.png
    2H53WHoyRtm4W0h7LfqX3Q.png
    2 KB · Views: 909
Physics news on Phys.org
Quatros said:

Homework Statement



I'm trying to change the bounds for this integral
Sin(x^2)dxdy

With x going from 1 to 2y, y going from 0 to 1
(I already know the integration for sin(x^2)

The Attempt at a Solution



I converted 2y=x to 1/2x=y and graphed all the bounds.

View attachment 215034
haj14p

I went with 1,2 for my xbounds, and the 1/2x = y to to 1, I'm getting answer close to the correct answer, but no dice.

Show your actual computations, and tell us your answer.
 
(forgot to add a +3 in sign) With wolfram (we were allowed to use tech for this one) I'm getting -.0116111 ( which is the correct answer in the book).
But with my parameters, -.0200198 with those parameters. y=.5x to 1, and x = 1 to 2. )
 
I really need help on this.
 
Quatros said:

Homework Statement



I'm trying to change the bounds for this integral
Sin(x^2)dxdy

With x going from 1 to 2y, y going from 0 to 1
(I already know the integration for sin(x^2)
Your problem statement isn't very clear. Is the region of integration the triangle bounded by the x-axis, the line x = 1, and the line y = (1/2)x?
And are you supposed to change the order of integration?

Based on what you wrote above, the region would be described as ##\{(x, y) | 2y \le x \le 1, 0 \le y \le 1\}##. Note that in the triangle, for a given y value, the x value on the sloping line is less than the x-value on the vertical line.
Quatros said:

The Attempt at a Solution



I converted 2y=x to 1/2x=y and graphed all the bounds.

View attachment 215034
haj14p

I went with 1,2 for my xbounds, and the 1/2x = y to to 1, I'm getting answer close to the correct answer, but no dice.
It's not as simple as just switching letters. Think about the range of x values in the triangle.
 
Quatros said:
(forgot to add a +3 in sign) With wolfram (we were allowed to use tech for this one) I'm getting -.0116111 ( which is the correct answer in the book).
But with my parameters, -.0200198 with those parameters. y=.5x to 1, and x = 1 to 2. )

This is not a helpful answer to my suggestion that you show your work. Write down the actual formulas you used.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
Replies
10
Views
2K