GilSE
- 9
- 3
- Homework Statement
- Derive electric field of moving charge formulas from Lienard-Wiechert potentials.
- Relevant Equations
- Formulas of electromagnetic field of moving charge to be derived:
$$\vec E=\frac q {\mu^3}\left((1-\beta^2)\vec R-R(1-\beta^2)\vec\beta\right)+\frac q{c\mu^3}\left(\vec R\times\left((\vec R-R\vec\beta)\times\vec\beta\right)\right)$$
$$\vec B =\frac{\vec R}{R}\times\vec E$$
$$\mu=R-\vec\beta\cdot\vec R$$
##\vec R## is a difference between point, where the fields are calculated, and the point, where moving charge are.
Here and further, all values are considered taken in ##t'## moment (except those in general formulas for calculating EMF from potentials)
Values in the right side of these equations should be calculated at the moment ##t'## given by equation: ##R(t')=c(t-t')##.
One can derive field equations from Lienard-Wiechert potentials:
$$\varphi = \frac q {\mu}$$
$$\vec A=\frac{q\vec\beta}{\mu}$$
By general formulas:
$$\vec E = -\nabla\varphi-\frac 1 c \frac{\partial\vec A}{\partial t}$$
$$\vec B=\nabla\times\vec A$$
Also I have these relations from my textbook:
$$\frac{\partial R}{\partial t'}=-c\frac{\vec\beta\cdot\vec R}R$$
$$\frac {\partial t'}{\partial t}=\frac R{\mu}$$
At first, I derived that:
$$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$
(dot means differentiation with respect to ##t'##).
I assume this result is true because it gives valid result for magnetic field.
To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula.
$$\frac {\partial \vec A}{\partial t}=\frac {\partial \vec A}{\partial t'}\frac {\partial t'}{\partial t}=q\frac {\partial t'}{\partial t}\left(\frac1\mu\frac{\partial\vec\beta}{\partial t'}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)=q\frac {\partial t'}{\partial t}\left(\frac1\mu\dot{\vec\beta}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)$$
Then calculated separately:
$$\frac{\partial\mu}{\partial t'}=\frac{\partial R}{\partial t'}-\frac{\partial(\vec\beta\cdot\vec R)}{\partial t'}=\frac{\partial R}{\partial t'}-\vec\beta\cdot\frac{\partial\vec R}{\partial t'}-\vec R\cdot\frac{\partial\vec\beta}{\partial t'}$$
Now use the fact that:
$$\frac{\partial R}{\partial t'}=-c\frac{\vec\beta\cdot\vec R}R$$
Also, obviously:
$$\frac{\partial \vec R}{\partial t'}=-c\vec\beta$$
Substituting these two formulas in the above one:
$$\frac{\partial\mu}{\partial t'}=-c\frac{\vec\beta\cdot\vec R}R+c\beta^2-\vec R\cdot\dot{\vec\beta}$$
And finally:
$$\frac {\partial \vec A}{\partial t}=q\frac {\partial t'}{\partial t}\left(\frac1\mu\dot{\vec\beta}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)=$$
$$=q\frac R\mu\left(\frac 1 \mu\dot{\vec\beta}+\frac 1 {\mu^2}\left(c\frac{\vec\beta\cdot\vec R}R-c\beta^2+\vec R\cdot\dot{\vec\beta}\right)\vec\beta\right)=$$
$$=q\frac R{\mu^3}\left(\mu\dot{\vec\beta}+\left(c\frac{\vec\beta\cdot\vec R}R-c\beta^2+\vec R\cdot\dot{\vec\beta}\right)\vec\beta\right)$$
Using expression for ##\nabla\frac 1{\mu}##, electric field is:
$$\vec E=\frac q{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R-q\frac R{\mu^3}\left(\frac{\mu\dot{\vec\beta}}c+\left(\frac{\vec\beta\cdot\vec R}R-\beta^2+\frac{\vec R\cdot\dot{\vec\beta}}c\right)\vec\beta\right)=$$
$$=\frac q {\mu^3}\left((1-\beta^2)\vec R-R\left(\frac{\vec R\cdot\dot{\vec\beta}}R-\beta^2\right)\vec\beta\right)+\frac q {c\mu^3}\left((\dot{\vec\beta}\cdot R)\vec R-\mu R\dot{\vec\beta}-R(\dot{\vec\beta}\cdot R)\vec\beta\right)$$
The second part after simplification matches the second part of Lienard-Wiechert E-field equation, but the first slightly differs, and I can't find an error causing it. I'll appreciate any help with finding it.
$$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$
(dot means differentiation with respect to ##t'##).
I assume this result is true because it gives valid result for magnetic field.
To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula.
$$\frac {\partial \vec A}{\partial t}=\frac {\partial \vec A}{\partial t'}\frac {\partial t'}{\partial t}=q\frac {\partial t'}{\partial t}\left(\frac1\mu\frac{\partial\vec\beta}{\partial t'}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)=q\frac {\partial t'}{\partial t}\left(\frac1\mu\dot{\vec\beta}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)$$
Then calculated separately:
$$\frac{\partial\mu}{\partial t'}=\frac{\partial R}{\partial t'}-\frac{\partial(\vec\beta\cdot\vec R)}{\partial t'}=\frac{\partial R}{\partial t'}-\vec\beta\cdot\frac{\partial\vec R}{\partial t'}-\vec R\cdot\frac{\partial\vec\beta}{\partial t'}$$
Now use the fact that:
$$\frac{\partial R}{\partial t'}=-c\frac{\vec\beta\cdot\vec R}R$$
Also, obviously:
$$\frac{\partial \vec R}{\partial t'}=-c\vec\beta$$
Substituting these two formulas in the above one:
$$\frac{\partial\mu}{\partial t'}=-c\frac{\vec\beta\cdot\vec R}R+c\beta^2-\vec R\cdot\dot{\vec\beta}$$
And finally:
$$\frac {\partial \vec A}{\partial t}=q\frac {\partial t'}{\partial t}\left(\frac1\mu\dot{\vec\beta}-\frac 1{\mu^2}\frac{\partial\mu}{\partial t'}\vec\beta\right)=$$
$$=q\frac R\mu\left(\frac 1 \mu\dot{\vec\beta}+\frac 1 {\mu^2}\left(c\frac{\vec\beta\cdot\vec R}R-c\beta^2+\vec R\cdot\dot{\vec\beta}\right)\vec\beta\right)=$$
$$=q\frac R{\mu^3}\left(\mu\dot{\vec\beta}+\left(c\frac{\vec\beta\cdot\vec R}R-c\beta^2+\vec R\cdot\dot{\vec\beta}\right)\vec\beta\right)$$
Using expression for ##\nabla\frac 1{\mu}##, electric field is:
$$\vec E=\frac q{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R-q\frac R{\mu^3}\left(\frac{\mu\dot{\vec\beta}}c+\left(\frac{\vec\beta\cdot\vec R}R-\beta^2+\frac{\vec R\cdot\dot{\vec\beta}}c\right)\vec\beta\right)=$$
$$=\frac q {\mu^3}\left((1-\beta^2)\vec R-R\left(\frac{\vec R\cdot\dot{\vec\beta}}R-\beta^2\right)\vec\beta\right)+\frac q {c\mu^3}\left((\dot{\vec\beta}\cdot R)\vec R-\mu R\dot{\vec\beta}-R(\dot{\vec\beta}\cdot R)\vec\beta\right)$$
The second part after simplification matches the second part of Lienard-Wiechert E-field equation, but the first slightly differs, and I can't find an error causing it. I'll appreciate any help with finding it.
Last edited: