Help with electron evolution governed by Hamiltonian

EEnerd
Messages
10
Reaction score
0
help with electron evolution governed by Hamiltonian ,,,

Homework Statement




an electron evolution governed by Hamiltonian H=(p^2) /2m +(1/(4Piε))* (e^2)/(r1-r2) give an energy approximation and what's the physical interpretation of the such a Hamiltonian

Homework Equations





The Attempt at a Solution

cant really think of something, any hints how to start ?! got an exam on the topic tomorrow
 
Physics news on Phys.org
So what do the parts of a Hamiltonian represent? Hint, in classical physics one is the kinetic energy and one is the potential energy. So what are they here? And what would that mean as far as the potential?
 
I would guess it should the energy needed to ionize the atom which is probably -13.6ev,
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top