alba_ei
- 38
- 1
Homework Statement
<br /> \lim_{x \to - \infty} \frac{3^x-3^{-x}}{3^x+3^{-x}}<br />
Homework Equations
<br /> \lim_{x \to - \infty} \frac{3^x-3^{-x}}{3^x+3^{-x}} = - 1<br />
The Attempt at a Solution
Im getting trouble when I try to evaluate this limit, altough the answer is -1 idont know how to get to it.
<br /> \lim_{x \to - \infty} \frac{3^x-3^{-x}}{3^x+3^{-x}}<br />
<br /> = \lim_{x \to - \infty} \frac{3^{-x}(3^{2x}-1)}{3^{-x}(3^{2x}+1)}<br />
<br /> = \lim_{x \to - \infty} \frac{3^{2x}-1}{3^{2x}+1}<br />
<br /> = \lim_{x \to - \infty} \frac{1-\frac{1}{3^{2x}}}{1+\frac{1}{3^{2x}}}<br />
<br /> = \lim_{x \to - \infty} \frac{1}{1} = 1<br />
I got 1, not -1
Last edited: