Mathman23
- 248
- 0
If E is a non empty set and(B_n)_{n \geq 1} are elements in the set 2^E.
I then need help showing the following:
lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcup_{n\, =\, 1} ^{\infty}\, B_n
if and only if B_n\, \subseteq\, B_{n+1}, for all n\, \geq\, 1,
Also I need to show
lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcap_{n=1} ^{\infty} B_n
if and only if B_n\, \supseteq\, B_{n+1}, for all n\, \geq\, 1
I know that for every sequence (a_n)_{n\, \geq\, 1} of elements in the set - \infty\ \union\ \mathbb{R}\ \union\ \infty.
lim_n\, sup\, a_n\, =\, inf(M_n|\, n\, \geq\, 1), where M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1.
lim_n\, inf\, a_n\, =\, inf(m_n|\, n\, \geq\, 1), where m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1.
But could somebody please give me a hint or an idear on how to use this fact to show the original task?
Sincerely Fred
I then need help showing the following:
lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcup_{n\, =\, 1} ^{\infty}\, B_n
if and only if B_n\, \subseteq\, B_{n+1}, for all n\, \geq\, 1,
Also I need to show
lim_n\, sup\, B_n\, =\, lim_n\, inf\, B_n\, =\, \bigcap_{n=1} ^{\infty} B_n
if and only if B_n\, \supseteq\, B_{n+1}, for all n\, \geq\, 1
I know that for every sequence (a_n)_{n\, \geq\, 1} of elements in the set - \infty\ \union\ \mathbb{R}\ \union\ \infty.
lim_n\, sup\, a_n\, =\, inf(M_n|\, n\, \geq\, 1), where M_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1.
lim_n\, inf\, a_n\, =\, inf(m_n|\, n\, \geq\, 1), where m_n\, :=\, sup(a_k|\, k\, \geq\, n},\, n\, \geq\, 1.
But could somebody please give me a hint or an idear on how to use this fact to show the original task?
Sincerely Fred
Last edited: