Help with Proving (-x)3=-(x3) in Real Numbers

  • Thread starter Thread starter Airaya
  • Start date Start date
  • Tags Tags
    Proof
Airaya
Messages
1
Reaction score
0

Homework Statement

Prove for all xεR [(-x)3 = -(x3)]
(Hint you may use the fact that -x = (-1)*x, but other wise stick to axioms)
I wrote something along the lines of .
(-x)3 can be written as (-1)(x)(x)(x) and -(x)3 can be written as (-1)((x)(x)(x))
and these are both equivalent
But it doesn't feel like I'm proving anything.
Not sure how to really write this out so there is enough "proof"
 
Physics news on Phys.org
I think the point you are missing is that (-x)3 "can be written as" (-x)(-x)(-x) and then you can show that is equal to -(x)(x)(x).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top