kbrono
- 16
- 0
Homework Statement
Let f be a function let p /in R. Assume limx->p=L and L>0. Prove f(x)>L/2
The Attempt at a Solution
Let f be a function let p /in R. Given that limx->pf(x)=L and L>0. Since L\neq0 Let \epsilon= |L|/2. Then given any \delta>0 and let p=0 we have |f(x)-L| = |0-L| = |L| > |L|/2=\epsilon. Thus f(x) > |L|/2 near p.